Littérature scientifique sur le sujet « YOLO ALGORITHMS »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « YOLO ALGORITHMS ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "YOLO ALGORITHMS"
Wan, Chengjuan, Yuxuan Pang et Shanzhen Lan. « Overview of YOLO Object Detection Algorithm ». International Journal of Computing and Information Technology 2, no 1 (25 août 2022) : 11. http://dx.doi.org/10.56028/ijcit.1.2.11.
Texte intégralKadhum, Aseil Nadhum, et Aseel Nadhum Kadhum. « Literature Survey on YOLO Models for Face Recognition in Covid-19 Pandemic ». June-July 2023, no 34 (29 juillet 2023) : 27–35. http://dx.doi.org/10.55529/jipirs.34.27.35.
Texte intégralZhou, Xuan, Jianping Yi, Guokun Xie, Yajuan Jia, Genqi Xu et Min Sun. « Human Detection Algorithm Based on Improved YOLO v4 ». Information Technology and Control 51, no 3 (23 septembre 2022) : 485–98. http://dx.doi.org/10.5755/j01.itc.51.3.30540.
Texte intégralLiu, Tao, Bo Pang, Lei Zhang, Wei Yang et Xiaoqiang Sun. « Sea Surface Object Detection Algorithm Based on YOLO v4 Fused with Reverse Depthwise Separable Convolution (RDSC) for USV ». Journal of Marine Science and Engineering 9, no 7 (7 juillet 2021) : 753. http://dx.doi.org/10.3390/jmse9070753.
Texte intégralChen, Xin, Peng Shi et Yi Hu. « A Precise Semantic Segmentation Model for Seabed Sediment Detection Using YOLO-C ». Journal of Marine Science and Engineering 11, no 7 (24 juillet 2023) : 1475. http://dx.doi.org/10.3390/jmse11071475.
Texte intégralCong, Xiaohan, Shixin Li, Fankai Chen, Chen Liu et Yue Meng. « A Review of YOLO Object Detection Algorithms based on Deep Learning ». Frontiers in Computing and Intelligent Systems 4, no 2 (25 juin 2023) : 17–20. http://dx.doi.org/10.54097/fcis.v4i2.9730.
Texte intégralKarmakar, Malay. « Face Recognition Technique using YOLO V5 Algorithm ». International Research Journal of Computer Science 10, no 03 (31 mars 2023) : 04–12. http://dx.doi.org/10.26562/irjcs.2023.v1002.01.
Texte intégralGao, Ruizhen, Shuai Zhang, Haoqian Wang, Jingjun Zhang, Hui Li et Zhongqi Zhang. « The Aeroplane and Undercarriage Detection Based on Attention Mechanism and Multi-Scale Features Processing ». Mobile Information Systems 2022 (19 septembre 2022) : 1–12. http://dx.doi.org/10.1155/2022/2582288.
Texte intégralLiu, Jiayi, Xingfei Zhu, Xingyu Zhou, Shanhua Qian et Jinghu Yu. « Defect Detection for Metal Base of TO-Can Packaged Laser Diode Based on Improved YOLO Algorithm ». Electronics 11, no 10 (13 mai 2022) : 1561. http://dx.doi.org/10.3390/electronics11101561.
Texte intégralLi, Zhuang, Jianhui Yuan, Guixiang Li, Hao Wang, Xingcan Li, Dan Li et Xinhua Wang. « RSI-YOLO : Object Detection Method for Remote Sensing Images Based on Improved YOLO ». Sensors 23, no 14 (14 juillet 2023) : 6414. http://dx.doi.org/10.3390/s23146414.
Texte intégralThèses sur le sujet "YOLO ALGORITHMS"
Marmayohan, Nivethan, et Abdirahman Farah. « Scene analysis using Tensorflow & ; YOLO algorithms on Raspberry pi 4 ». Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-45540.
Texte intégralObject detection is one of the essential software components in the next generation of traffic monitoring. Real-time detection and recognition of objects are essential tasks for image processing. Therefore, deep learning algorithms for object detection such as YOLO (You Only Look Once) are increasingly used in image analysis, since they run in normal video frame rate (real-time) and are reasonably accurate. This study presents an embedded system and its results for detecting and recognizing objects in real-time. Results are based on a video stream originating from a traffic environment in the city of Halmstad (Sweden). The embedded system is implemented in Raspberry pi 4 using the software Tensorflow and different deep learning algorithms of the YOLO software package. Real-time analyses on frames per second, accuracy in mean average precision, CPU temperature, and CPU frequency are reported for experiments comprising transfer learning. A main conclusion is that Raspberry pi 4 can perform object classification and detection with high accuracy in certain scenarios for traffic monitoring with YOLO algorithms. For example, classifying objects with the speed of a pedestrian would be feasible with classifying and detecting with high accuracy. On the other hand, with high-speed objects such as cars and cyclists, it is a more challenging task for Raspberry pi 4 to detect and classify objects.
Donini, Massimo. « Algoritmi di stitching per il rilevamento dell'occupazione di aule in un contesto smart campus ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19063/.
Texte intégralARYA, DEEPRAJ. « POTHOLE DETECTION ». Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20452.
Texte intégralFarinha, João Simões. « In-vehicle object detection with YOLO algorithm ». Master's thesis, 2018. http://hdl.handle.net/1822/64273.
Texte intégralWith the growing computational power that we have at our disposal and the ever-increasing amount of data available the field of machine learning has given rise to deep learning, a subset of machine learning algorithms that have shown extraordinary results in a variety of applications from natural language processing to computer vision. In the field of computer vision, these algorithms have greatly improved the state-of-the-art accuracy in tasks associated with object recognition such as detection. This thesis makes use of one of these algorithms, specifically the YOLO algorithm, as a basis in the development of a system capable of detecting objects laying inside a car cockpit. To this end a dataset is collected for the purpose of training the YOLO algorithm on this task. A comparative analysis of the detection performance of the YOLOv2 and YOLOv3 architectures is performed.Several experiments are performed by modifying the YOLOv3 architecture to attempt to improve its accuracy. Specifically tests are performed in regards to network size, and the multiple outputs present in this network. Explorative experiments are done in order to test the effect that parallel network might have on detection performance. Lastly tests are done to try to find an optimal learning rate and batch size for our dataset on the new architectures.
Com o crescente poder computacional que temos à nossa disposição e o aumento da quantidade dados a que temos acesso o campo de machine learning deu origem ao deep learning um subconjunto de algoritmos de machine learning que têm demonstrado resultados extraordinários numa variedade de aplicações desde processamento de linguagens naturais a visão por computador. No campo de visão por computador estes algoritmos têm levado a enormes progressos na correção de sistemas de deteção de objetos. Nesta tese usamos um destes algoritmos, especificament o YOLO, como base para desenvolver um sistema capaz de detetar objetos dentro de um carro. Dado isto um dataset é recolhido com o propósito de treinar o algoritmo YOLO nesta tarefa. Uma analise comparativa da correção dos algoritmos YOLOv2 e YOLOv3 ´e realizada. Várias técnicas relacionadas com a modificação da arquitetura YOLOv3 são exploradas para otimizar o sistema para o problema especifico de deteção a bordo de veículos. Especificamente testes são realizados no contexto de tamanho da rede e dos múltiplos outputs presentes nesta rede. Experiencias exploratórias são realizadas de forma a testar o efeito que redes parallelas podem ter na correção dos algoritmos. Por fim testes são feitos para tentar encontrar learning rates e batch sizes apropriados para o nosso dataset nas novas arquiteturas.
Liu, Chun-Yu, et 劉峻瑜. « Implementation of Fruit Quality Classification System using YOLO Algorithm ». Thesis, 2019. http://ndltd.ncl.edu.tw/handle/2chdzs.
Texte intégral國立高雄科技大學
電子工程系
107
The thesis presents a proposed system that uses YOLO (You Only Look Once)-V3 algorithm, IOU (Intersection over Union) tracking method, and CNN (Convolutional Neural Network) classifier to identify the external quality of fruits. The system mainly uses the YOLO-V3 algorithm to perform the fruit detection process, uses the IOU tracking algorithm to track the designated fruits continuously, and identifies fruits during the tracking processes. It can pick up good fruits through controlling the switched gap of conveying platform. It performs the software programs on the Jetson TX2 embedded development platform and uses the STM32 processor to control the switched gap. The proposed system can detect small and round fruits under an effective development process. To improve the efficiency of system, a graphic user interface is also designed to control , collect data, evaluate models,and monitor the entire system operation. The experimental results show that our proposed system can achieve up to 88% of the accuracy rate, 75% of the mean Average Precision (mAP) after testing 4,500 images of fruits.
Yu, Wei-Chih, et 余韋志. « The object detection of moving ground vehicles using YOLO algorithm on UAV ». Thesis, 2018. http://ndltd.ncl.edu.tw/handle/qqwcjc.
Texte intégral義守大學
機械與自動化工程學系
106
When people talk about the definition of Computer Vision, the first thing that comes to mind is the image classification. Previous researches illustrated that image classification is one of the most basic tasks of computer vision. However, based on the basis of image classification, there are more complicated and interesting tasks, such as: object detection, object location, image segmentation...etc in computer vision. The object detection is a practical and challenging task, which can be regarded as a combination of image classification and object location, given a complicated target detection system. To identify the selected object from various targets in the picture (target detection system), and to give the precise location of the target demonstrated the target detection is more complicated than the classification task. A practical application scenario of target detection is autonomous cars and Unmanned Aerial Vehicle (UAV). The aim of this research is to develop an object detection system on a UAV. The developed system is capable to real-time capture the wanted target on the wall and moving target on the ground using remote control system. A series of comprehensive tests has been conducted based on the YOLO algorithm in this paper.
Livres sur le sujet "YOLO ALGORITHMS"
Tovey, Craig A. A polynomial-time algorithm for computing the yolk in fixed dimension. Monterey, Calif : Naval Postgraduate School, 1991.
Trouver le texte intégralChapitres de livres sur le sujet "YOLO ALGORITHMS"
Sai Venu Prathap, K., D. Srinivasulu Reddy, S. Madhusudhan et S. Mohammed Mazharr. « Intelligent Traffic Light System Using YOLO ». Dans Algorithms for Intelligent Systems, 95–107. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1669-4_9.
Texte intégralGandhi, Jimit, Purvil Jain et Lakshmi Kurup. « YOLO Based Recognition of Indian License Plates ». Dans Algorithms for Intelligent Systems, 411–21. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3242-9_39.
Texte intégralRanjan, Ashish, Sunita Dhavale et Suresh Kumar. « YOLO Algorithms for Real-Time Fire Detection ». Dans Data Management, Analytics and Innovation, 537–53. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1414-2_40.
Texte intégralSanthosh Kumar, C., K. Amritha Devangana, P. L. Abirami, M. Prasanna et S. Hari Aravind. « Identification and Classification of Skin Diseases with Erythema Using YOLO Algorithm ». Dans Algorithms for Intelligent Systems, 595–605. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4626-6_49.
Texte intégralGhosh, Rajib. « A Modified YOLO Model for On-Road Vehicle Detection in Varying Weather Conditions ». Dans Algorithms for Intelligent Systems, 45–54. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1295-4_5.
Texte intégralGali, Manoj, Sunita Dhavale et Suresh Kumar. « Real-Time Image Based Weapon Detection Using YOLO Algorithms ». Dans Communications in Computer and Information Science, 173–85. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12641-3_15.
Texte intégralJain, Shilpa, S. Indu et Nidhi Goel. « Comparative Analysis of YOLO Algorithms for Intelligent Traffic Monitoring ». Dans Proceedings on International Conference on Data Analytics and Computing, 159–68. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3432-4_13.
Texte intégralGonzalez, Dibet Garcia, João Carias, Yusbel Chávez Castilla, José Rodrigues, Telmo Adão, Rui Jesus, Luís Gonzaga Mendes Magalhães et al. « Evaluating Rotation Invariant Strategies for Mitosis Detection Through YOLO Algorithms ». Dans Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 24–33. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32029-3_3.
Texte intégralWang, Aibin, Youshi Ye, Yu Peng, Dezheng Zhang, Zhihong Yan et Dong Wang. « A Low-Latency Hardware Accelerator for YOLO Object Detection Algorithms ». Dans Lecture Notes in Computer Science, 265–78. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7872-4_15.
Texte intégralWyawahare, Medha, Jyoti Madake, Agnibha Sarkar, Anish Parkhe, Archis Khuspe et Tejas Gaikwad. « Crop-Weed Detection, Depth Estimation and Disease Diagnosis Using YOLO and Darknet for Agribot : A Precision Farming Robot ». Dans Algorithms for Intelligent Systems, 57–69. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4626-6_5.
Texte intégralActes de conférences sur le sujet "YOLO ALGORITHMS"
Zhang, Ce, et Azim Eskandarian. « A Comparative Analysis of Object Detection Algorithms in Naturalistic Driving Videos ». Dans ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69975.
Texte intégralGillani, Ismat Saira, Muhammad Rizwan Munawar, Muhammad Talha, Salman Azhar, Yousra Mashkoor, Muhammad Sami uddin et Usama Zafar. « Yolov5, Yolo-x, Yolo-r, Yolov7 Performance Comparison : A Survey ». Dans 8th International Conference on Artificial Intelligence and Fuzzy Logic System (AIFZ 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121602.
Texte intégralBohong, Liu, et Wang Xinpeng. « Garbage Detection Algorithm Based on YOLO v3 ». Dans 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). IEEE, 2022. http://dx.doi.org/10.1109/eebda53927.2022.9744738.
Texte intégralLi, Huiming, Shuo Zhou, Yuyuan Du, Qingliang Zou et Shoufeng Tang. « Research on Robotic Arm Based on YOLO ». Dans 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCAI). IEEE, 2022. http://dx.doi.org/10.1109/ahpcai57455.2022.10087753.
Texte intégralHuang, Jubin, Zexuan Guo, Xuebin Hong, Haohai Wu et Zhe Lin. « UAV image object detection network based on Yolo ». Dans 3rd International Conference on Advanced Algorithms and Signal Image Processing (AASIP 2023), sous la direction de Kannimuthu Subramaniam et Pavel Loskot. SPIE, 2023. http://dx.doi.org/10.1117/12.3005996.
Texte intégralPan, Zhai. « Research on Improved Yolo on Garbage Classification Task ». Dans 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). IEEE, 2022. http://dx.doi.org/10.1109/eebda53927.2022.9744865.
Texte intégralDodia, Ayush, et Sumit Kumar. « A Comparison of YOLO Based Vehicle Detection Algorithms ». Dans 2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1). IEEE, 2023. http://dx.doi.org/10.1109/icaia57370.2023.10169773.
Texte intégralTong, Bingshen, et Menglin Zhang. « Comparison of YOLO Series Algorithms in Mask Detection ». Dans 2023 International Workshop on Intelligent Systems (IWIS). IEEE, 2023. http://dx.doi.org/10.1109/iwis58789.2023.10284631.
Texte intégralShen, Zhichao, et Zhiheng Zhao. « Improved lightweight peanut detection algorithm based on YOLO v3 ». Dans 2021 International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA). IEEE, 2021. http://dx.doi.org/10.1109/caibda53561.2021.00043.
Texte intégralLi, Chuan, Manming Shu, Ling Du, Haoyue Tan et Lang Wei. « Design of Automatic Recycling Robot Based on YOLO Target Detection ». Dans 2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML). IEEE, 2022. http://dx.doi.org/10.1109/cacml55074.2022.00059.
Texte intégralRapports d'organisations sur le sujet "YOLO ALGORITHMS"
Tovey, Craig A. A Polynomial-Time Algorithm for Computing the Yolk in Fixed Dimension. Fort Belvoir, VA : Defense Technical Information Center, août 1991. http://dx.doi.org/10.21236/ada240060.
Texte intégral