Littérature scientifique sur le sujet « Zhong yi zhen duan xue »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Zhong yi zhen duan xue ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Zhong yi zhen duan xue"

1

Thanh Binh, Nguyen Thi, Nguyen Thi Hai Yen, Dang Kim Thu, Nguyen Thanh Hai et Bui Thanh Tung. « The Potential of Medicinal Plants and Bioactive Compounds in the Fight Against COVID-19 ». VNU Journal of Science : Medical and Pharmaceutical Sciences 37, no 3 (14 septembre 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4372.

Texte intégral
Résumé :
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus , is causing a serious worldwide COVID-19 pandemic. The emergence of strains with rapid spread and unpredictable changes is the cause of the increase in morbidity and mortality rates. A number of drugs as well as vaccines are currently being used to relieve symptoms, prevent and treat the disease caused by this virus. However, the number of approved drugs is still very limited due to their effectiveness and side effects. In such a situation, medicinal plants and bioactive compounds are considered a highly valuable source in the development of new antiviral drugs against SARS-CoV-2. This review summarizes medicinal plants and bioactive compounds that have been shown to act on molecular targets involved in the infection and replication of SARS-CoV-2. Keywords: Medicinal plants, bioactive compounds, antivirus, SARS-CoV-2, COVID-19 References [1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019, Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[2] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int, 2021 (accessed on: August 27, 2021).[3] H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang et al., SARS Coronavirus Entry into Host Cells Through a Novel Clathrin- and Caveolae-Independent Endocytic Pathway, Cell Research, Vol. 18, No. 2, 2008, pp. 290-301, https://doi.org/10.1038/cr.2008.15.[4] A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K. Y. Yuen., Coronaviruses-Drug Discovery and Therapeutic Options, Nature Reviews Drug Discovery, Vol. 15, 2016, pp. 327-347, https://doi.org/10.1038/nrd.2015.37.[5] A. Prasansuklab, A. Theerasri, P. Rangsinth, C. Sillapachaiyaporn, S. Chuchawankul, T. Tencomnao, Anti-COVID-19 Drug Candidates: A Review on Potential Biological Activities of Natural Products in the Management of New Coronavirus Infection, Journal of Traditional and Complementary Medicine, Vol. 11, 2021, pp. 144-157, https://doi.org/10.1016/j.jtcme.2020.12.001.[6] R. E. Ferner, J. K. Aronson, Chloroquine and Hydroxychloroquine in Covid-19, BMJ, Vol. 369, 2020, https://doi.org/10.1136/bmj.m1432[7] J. Remali, W. M. Aizat, A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection, Frontiers in Pharmacology, Vol. 11, 2021, https://doi.org/10.3389/fphar.2020.589044.[8] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Medical Virology, Vol. 92, 2020, pp. 418‐423. https://doi.org/10.1002/jmv.25681.[9] B. Benarba, A. Pandiella, Medicinal Plants as Sources of Active Molecules Against COVID-19, Frontiers in Pharmacology, Vol. 11, 2020, https://doi.org/10.3389/fphar.2020.01189.[10] N. T. Chien, P. V. Trung, N. N. Hanh, Isolation Tribulosin, a Spirostanol Saponin from Tribulus terrestris L, Can Tho University Journal of Science, Vol. 10, 2008, pp. 67-71 (in Vietnamese).[11] V. Q. Thang Study on Extracting Active Ingredient Protodioscin from Tribulus terrestris L.: Doctoral dissertation, VNU University of Science, 2018 (in Vietnamese).[12] Y. H. Song, D. W. Kim, M. J. C. Long, H. J. Yuk, Y. Wang, N. Zhuang et al., Papain-Like Protease (Plpro) Inhibitory Effects of Cinnamic Amides from Tribulus terrestris Fruits, Biological and Pharmaceutical Bulletin, Vol. 37, No. 6, 2014, pp. 1021-1028, https://doi.org/10.1248/bpb.b14-00026.[13] D. Dermawan, B. A. Prabowo, C. A. Rakhmadina, In Silico Study of Medicinal Plants with Cyclodextrin Inclusion Complex as The Potential Inhibitors Against SARS-Cov-2 Main Protease (Mpro) and Spike (S) Receptor, Informatics in Medicine Unlocked, Vol. 25, 2021, pp. 1-18, https://doi.org/10.1016/j.imu.2021.100645.[14] R. Dang, S. Gezici, Immunomodulatory Effects of Medicinal Plants and Natural Phytochemicals in Combating Covid-19, The 6th International Mediterranean Symposium on Medicinal and Aromatic Plants (MESMAP-6), Izmir, Selcuk (Ephesus), Turkey, 2020, pp. 12-13.[15] G. Jiangning, W. Xinchu, W. Hou, L. Qinghua, B. Kaishun, Antioxidants from a Chinese Medicinal Herb–Psoralea corylifolia L., Food Chemistry, Vol. 9, No. 2, 2005, pp. 287-292, https://doi.org/10.1016/j.foodchem.2004.04.029.[16] B. Ruan, L. Y. Kong, Y. Takaya, M. Niwa, Studies on The Chemical Constituents of Psoralea corylifolia L., Journal of Asian Natural Products Research, Vol. 9, No. 1, 2007, pp. 41-44, https://doi.org/10.1080/10286020500289618.[17] D. T. Loi, Vietnamese Medicinal Plants and Herbs, Medical Publishing House, Hanoi, 2013 (in Vietnamese).[18] S. Mazraedoost, G. Behbudi, S. M. Mousavi, S. A. Hashemi, Covid-19 Treatment by Plant Compounds, Advances in Applied NanoBio-Technologies, Vol. 2, No. 1, 2021, pp. 23-33, https://doi.org/10.47277/AANBT/2(1)33.[19] B. A. Origbemisoye, S. O. Bamidele, Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review, Asian Journal of Medical Principles and Clinical Practice, 2020, pp. 15-26, https://journalajmpcp.com/index.php/AJMPCP/article/view/30124[20] A. Mandal, A. K. Jha, B. Hazra, Plant Products as Inhibitors of Coronavirus 3CL Protease, Frontiers in Pharmacology, Vol. 12, 2021, pp. 1-16, https://doi.org/10.3389/fphar.2021.583387[21] N. H. Tung, V. D. Loi, B. T. Tung, L.Q. Hung, H. B. Tien et al., Triterpenen Ursan Frame Isolated from the Roots of Salvia Miltiorrhiza Bunge Growing in Vietnam, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 2, 2016, pp. 58-62, https://js.vnu.edu.vn/MPS/article/view/3583 (in Vietnamese).[22] J. Y. Park, J. H. Kim, Y. M. Kim, H. J. Jeong, D. W. Kim, K. H. Park et al., Tanshinones as Selective and Slow-Binding Inhibitors for SARS-CoV Cysteine Proteases. Bioorganic and Medicinal Chemistry, Vol. 20, No. 19, 2012, pp. 5928-5935, https://doi.org/10.1016/j.bmc.2012.07.038.[23] F. Hamdani, N. Houari, Phytotherapy of Covid-19. A Study Based on a Survey in North Algeria, Phytotherapy, Vol. 18, No. 5, 2020, pp. 248-254, https://doi.org/10.3166/phyto-2020-0241.[24] P. T. L. Huong, N. T. Dinh, Chemical Composition And Antibacterial Activity of The Essential Oil From The Leaves of Regrowth Eucalyptus Collected from Viet Tri City, Phu Tho Province, Vietnam Journal of Science, Technology and Engineering, Vol. 18, No. 1, 2020, pp. 54-61 (in Vietnamese).[25] M. Asif, M. Saleem, M. Saadullah, H. S. Yaseen, R. Al Zarzour, COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties, Inflammopharmacology, Vol. 28, 2020, pp. 1153-1161, https://doi.org/10.1007/s10787-020-00744-0.[26] I. Jahan, O. Ahmet, Potentials of Plant-Based Substance to Inhabit and Probable Cure for The COVID-19, Turkish Journal of Biology, Vol. 44, No. SI-1, 2020, pp. 228-241, https://doi.org/10.3906/biy-2005-114.[27] A. D. Sharma, I. Kaur, Eucalyptus Essential Oil Bioactive Molecules from Against SARS-Cov-2 Spike Protein: Insights from Computational Studies, Res Sq., 2021, pp. 1-6, https://doi.org/10.21203/ rs.3.rs-140069/v1. [28] K. Rajagopal, P. Varakumar, A. Baliwada, G. Byran, Activity of Phytochemical Constituents of Curcuma Longa (Turmeric) and Andrographis Paniculata Against Coronavirus (COVID-19): An in Silico Approach, Future Journal of Pharmaceutical Sciences, Vol. 6, No. 1, 2020, pp. 1-10, https://doi.org/10.1186/s43094-020-00126-x[29] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan et al., Structure of The SARS-CoV-2 Spike Receptor-Binding Domain Bound to The ACE2 Receptor, Nature, Vol. 581, No. 7807, 2020, pp. 215-220, https://doi.org/10.1038/s41586-020-2180-5.[30] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-Cov-2 and Other Lineage B Betacoronaviruses, Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.[31] C. Yi, X. Sun, J. Ye, L. Ding, M. Liu, Z. Yang et al., Key Residues of The Receptor Binding Motif in The Spike Protein of SARS-Cov-2 That Interact with ACE2 and Neutralizing Antibodies, Cellular and Molecular Immunology, Vol. 17, No. 6, 2020, pp. 621-630, https://doi.org/10.1038/s41423-020-0458-z.[32] N. T. Thom, Study on The Composition and Biological Activities of Flavonoids from The Roots of Scutellaria baicalensis: Doctoral Dissertation, Hanoi University of Science and Technology, 2018 (in Vietnamese).[33] Y. J. Tang, F. W. Zhou, Z. Q. Luo, X. Z. Li, H. M. Yan, M. J. Wang et al., Multiple Therapeutic Effects of Adjunctive Baicalin Therapy in Experimental Bacterial Meningitis, Inflammation, Vol. 33, No. 3, 2010, pp. 180-188, https://doi.org/10.1007/s10753-009-9172-9.[34] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li et al., Scutellaria Baicalensis Extract and Baicalein Inhibit Replication of SARS-Cov-2 and Its 3C-Like Protease in Vitro, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 36, No. 1, 2021, pp. 497-503, https://doi.org/10.1080/14756366.2021.1873977.[35] Z. Iqbal, H. Nasir, S. Hiradate, Y. Fujii, Plant Growth Inhibitory Activity of Lycoris Radiata Herb. and The Possible Involvement of Lycorine as an Allelochemical, Weed Biology and Management, Vol. 6, No. 4, 2006, pp. 221-227, https://doi.org/10.1111/j.1445-6664.2006.00217.x.[36] S. Y. Li, C. Chen, H. Q. Zhang, H. Y. Guo, H. Wang, L. Wang et al., Identification of Natural Compounds with Antiviral Activities Against SARS-Associated Coronavirus, Antiviral Research, Vol. 67, No. 1, 2005, pp. 18-23, https://doi.org/10.1016/j.antiviral.2005.02.007.[37] S. Kretzing, G. Abraham, B. Seiwert, F. R. Ungemach, U. Krügel, R. Regenthal, Dose-dependent Emetic Effects of The Amaryllidaceous Alkaloid Lycorine in Beagle Dogs, Toxicon, Vol. 57, No. 1, 2011, pp. 117-124, https://doi.org/10.1016/j.toxicon.2010.10.012.[38] Y. N. Zhang, Q. Y. Zhang, X. D. Li, J. Xiong, S. Q. Xiao, Z. Wang, et al., Gemcitabine, Lycorine and Oxysophoridine Inhibit Novel Coronavirus (SARS-Cov-2) in Cell Culture, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 1170-1173, https://doi.org/10.1080/22221751.2020.1772676.[39] Y. H. Jin, J. S. Min, S. Jeon, J. Lee, S. Kim, T. Park et al., Lycorine, a Non-Nucleoside RNA Dependent RNA Polymerase Inhibitor, as Potential Treatment for Emerging Coronavirus Infections, Phytomedicine, Vol. 86, 2021, pp. 1-8, https://doi.org/10.1016/j.phymed.2020.153440.[40] H. V. Hoa, P. V. Trung, N. N. Hanh, Isolation Andrographolid and Neoandrographolid from Andrographis Paniculata Nees, Can Tho University Journal of Science, Vol. 10, 2008, pp. 25-30 (in Vietnamese)[41] S. K. Enmozhi, K. Raja, I. Sebastine, J. Joseph, Andrographolide as a Potential Inhibitor Of SARS-Cov-2 Main Protease: An in Silico Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 9, 2021, pp. 3092-3098, https://doi.org/10.1080/07391102.2020.1760136.[42] S. A. Lakshmi, R. M. B. Shafreen, A. Priya, K. P. Shunmugiah, Ethnomedicines of Indian Origin for Combating COVID-19 Infection by Hampering The Viral Replication: Using Structure-Based Drug Discovery Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 13, 2020, pp. 4594-4609, https://doi.org/10.1080/07391102.2020.1778537.[43] N. P. L. Laksmiani, L. P. F. Larasanty, A. A. G. J. Santika, P. A. A. Prayoga, A. A. I. K. Dewi, N. P. A. K. Dewi, Active Compounds Activity from The Medicinal Plants Against SARS-Cov-2 Using in Silico Assay, Biomedical and Pharmacology Journal, Vol. 13, No. 2, 2020, pp. 873-881, https://dx.doi.org/10.13005/bpj/1953.[44] N. A. Murugan, C. J. Pandian, J. Jeyakanthan, Computational Investigation on Andrographis Paniculata Phytochemicals to Evaluate Their Potency Against SARS-Cov-2 in Comparison to Known Antiviral Compounds in Drug Trials, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 12, 2020, pp. 4415-4426, https://doi.org/10.1080/07391102.2020.1777901.[45] S. Hiremath, H. V. Kumar, M. Nandan, M. Mantesh, K. Shankarappa,V. Venkataravanappa et al., In Silico Docking Analysis Revealed The Potential of Phytochemicals Present in Phyllanthus Amarus and Andrographis Paniculata, Used in Ayurveda Medicine in Inhibiting SARS-Cov-2, 3 Biotech, Vol. 11, No. 2, 2021, pp. 1-18, https://doi.org/10.1007/s13205-020-02578-7.[46] K. S. Ngiamsuntorn, A. Suksatu, Y. Pewkliang, P. Thongsri, P. Kanjanasirirat, S. Manopwisedjaroen, et al., Anti-SARS-Cov-2 Activity of Andrographis Paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, Journal of Natural Products, Vol. 84, No. 4, 2021, pp. 1261-1270, https://doi.org/10.1021/acs.jnatprod.0c01324.[47] D. X. Em, N. T. T. Dai, N. T. T. Tram, D. X. Chu, Four Compounds Isolated from Azadirachta Indica Jus leaves. F., Meliaceae, Pharmaceutical Journal, Vol. 59, No. 7, 2019, pp. 33-36 (in Vietnamese).[48] V. V Do, N. T. Thang, N. T. Minh, N. N. Hanh, Isolation, Purification and Investigation on Antimicrobial Activity of Salanin from Neem Seed Kernel (Azadirachta Indica A. Juss) of The Neem Tree Planted in Ninh Thuan Province, Vietnam, Journal of Science and Technology, Vol. 44, No. 2, 2006, pp. 24-31 (in Vietnamese).[49] P. I. Manzano Santana, J. P. P. Tivillin, I. A. Choez Guaranda, A. D. B. Lucas, A. Katherine, Potential Bioactive Compounds of Medicinal Plants Against New Coronavirus (SARS-Cov-2): A Review, Bionatura, Vol. 6, No. 1, 2021, pp. 1653-1658, https://doi.org/10.21931/RB/2021.06.01.30[50] S. Borkotoky, M. Banerjee, A Computational Prediction of SARS-Cov-2 Structural Protein Inhibitors from Azadirachta Indica (Neem), Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 11, 2021, pp. 4111-4121, https://doi.org/10.1080/07391102.2020.1774419.[51] R. Jager, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, J. M. Wilson, Comparative Absorption of Curcumin Formulations, Nutrition Journal, Vol. 13, No. 11, 2014, https://doi.org/10.1186/1475-2891-13-11.[52] D. Praditya, L. Kirchhoff, J. Bruning, H. Rachmawati, J. Steinmann, E. Steinmann, Anti-infective Properties of the Golden Spice Curcumin, Front Microbiol, Vol. 10, No. 912, 2019, https://doi.org/10.3389/fmicb.2019.00912.[53] C. C. Wen, Y. H. Kuo, J. T. Jan, P. H. Liang, S. Y. Wang, H. G. Liu et al., Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities Against Severe Acute Respiratory Syndrome Coronavirus, Journal of Medicinal Chemistry, Vol. 50, No. 17, 2007, pp. 4087-4095, https://doi.org/10.1021/jm070295s.[54] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[55] M. Kandeel, M. Al Nazawi, Virtual Screening and Repurposing of FDA Approved Drugs Against COVID-19 Main Protease, Life Sciences, Vol. 251, No. 117627, 2020, pp. 1-5, https://doi.org/10.1016/j.lfs.2020.117627.[56] V. K. Maurya, S. Kumar, A. K. Prasad, M. L. B. Bhatt, S. K. Saxena, Structure-Based Drug Designing for Potential Antiviral Activity of Selected Natural Products from Ayurveda Against SARS-CoV-2 Spike Glycoprotein and Its Cellular Receptor, Virusdisease, Vol. 31, No. 2, 2020, pp. 179-193, https://doi.org/10.1007/s13337-020-00598-8.[57] M. Hoffmann, H. Kleine Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, Vol. 181, No. 2, 2020, pp. 271-280, https://doi.org/10.1016/j.cell.2020.02.052.[58] S. Katta, A. Srivastava, R. L. Thangapazham, I. L. Rosner, J. Cullen, H. Li et al., Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells, International Journal of Molecular Sciences, Vol. 20, No. 19, 2019, pp. 4891-4907, https://doi.org/10.3390/ijms20194891.[59] D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao et al., Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin, ACS Applied Nano Materials, Vol. 1, No. 10, 2018, pp. 5451-5459, https://doi.org/10.1021/acsanm.8b00779.[60] T. Huynh, H. Wang, B. Luan, In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease, the Journal of Physical Chemistry Letters, Vol. 11, No. 11, 2020, pp. 4413-4420, https://doi.org/10.1021/acs.jpclett.0c00994.[61] D. D'Ardes, A. Boccatonda, I. Rossi, M. T. Guagnano, COVID-19 and RAS: Unravelling an Unclear Relationship, International Journal of Molecular Sciences, Vol. 21, No. 8, 2020, pp. 3003-3011, https://doi.org/10.3390/ijms21083003. [62] X. F. Pang, L. H. Zhang, F. Bai, N. P. Wang, R. E. Garner, R. J. McKallip et al., Attenuation of Myocardial Fibrosis with Curcumin is Mediated by Modulating Expression of Angiotensin II AT1/AT2 Receptors and ACE2 in Rats, Drug Design Development Therapy, Vol. 9, 2015, pp. 6043-6054, https://doi.org/10.2147/DDDT.S95333.[63] Y. Yao, W. Wang, M. Li, H. Ren, C. Chen, J. Wang et al., Curcumin Exerts its Anti-Hypertensive Effect by Down-Regulating the AT1 Receptor in Vascular Smooth Muscle Cells, Scientific Reports, Vol. 6, No. 25579, 2016, pp. 1-6, https://doi.org/10.1038/srep25579.[64] V. J. Costela Ruiz, R. Illescas Montes, J. M. Puerta Puerta, C. Ruiz, L. Melguizo Rodríguez, SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease, Cytokine Growth Factor Reviews, Vol. 54, 2020, pp. 62-75, https://doi.org/10.1016/j.cytogfr.2020.06.001.[65] H. Valizadeh, S. Abdolmohammadi Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi et al., Nano-Curcumin Therapy, a Promising Method in Modulating Inflammatory Cytokines in COVID-19 Patients, International Immunopharmacology, Vol. 89 (PtB), No. 107088, 2020, pp. 1-12, https://doi.org/10.1016/j.intimp.2020.107088.[66] Y. H. Lo, R. D. Lin, Y. P. Lin, Y. L. Liu, M. H. Lee, Active Constituents from Sophora Japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes, Journal of Ethnopharmacology, Vol. 124, No. 3, 2009, pp. 625-629, https://doi.org/10.1016/j.jep.2009.04.053.[67] A. Robaszkiewicz, A. Balcerczyk, G. Bartosz, Antioxidative and Prooxidative Effects of Quercetin on A549 Cells, Cell Biology International, Vol. 31, No. 10, 2007, pp. 1245-1250, https://doi.org/10.1016/j.cellbi.2007.04.009[68] N. Uchide, H. Toyoda, Antioxidant Therapy as a Potential Approach to Severe Influenza-associated Complications, Molecules (Basel, Switzerland), Vol. 16, No. 3, 2011, pp. 2032-2052, https://doi.org/10.3390/molecules16032032.[69] M. P. Nair, C. Kandaswami, S. Mahajan, K. C. Chadha, R. Chawda, H. Nair et al., The Flavonoid, Quercetin, Differentially Regulates Th-1 (IFNgamma) and Th-2 (IL4) Cytokine Gene Expression by Normal Peripheral Blood Mononuclear Cells, Biochimica et Biophysica Acta - Molecular Cell Research, Vol. 1593, No. 1, 2002, pp. 29-36, https://doi.org/10.1016/s0167-4889(02)00328-2.[70] X. Chen, Z. Wang, Z. Yang, J. Wang, Y. Xu, R. X. Tan et al., Houttuynia Cordata Blocks HSV Infection Through Inhibition of NF-κB Activation, Antiviral Research, Vol. 92, No. 2, 2011, pp. 341-345, https://doi.org/10.1016/j.antiviral.2011.09.005.[71] T. N. Kaul, E. J. Middleton, P. L. Ogra, Antiviral Effect of Flavonoids on Human Viruses, Journal of Medical Virology, Vol. 15. No. 1, 1985, pp. 71-79, https://doi.org/10.1002/jmv.1890150110.[72] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. AbuBakar, Antiviral Activity of Four Types of Bioflavonoid Against Dengue Virus Type-2, Virology Journal, Vol. 8, No. 1, 2011, pp. 560-571, https://doi.org/10.1186/1743-422X-8-560.[73] J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park et al., Evaluation of Polyphenols from Broussonetia Papyrifera as Coronavirus Protease Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, No. 1, 2017, pp. 504-515, https://doi.org/10.1080/14756366.2016.1265519.[74] S. C. Cheng, W. C. Huang, J. H. S. Pang, Y. H. Wu, C. Y. Cheng, Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, International Journal of Molecular Sciences, Vol. 20, No. 12, 2019, pp. 2957-2981, https://doi.org/10.3390/ijms20122957. [75] O. J. Lara Guzman, J. H. Tabares Guevara, Y. M. Leon Varela, R. M. Álvarez, M. Roldan, J. A. Sierra et al., Proatherogenic Macrophage Activities Are Targeted by The Flavonoid Quercetin, The Journal of Pharmacology and Experimental Therapeutics, Vol. 343, No. 2, 2012, pp. 296-303, https://doi.org/10.1124/jpet.112.196147.[76] A. Saeedi Boroujeni, M. R. Mahmoudian Sani, Anti-inflammatory Potential of Quercetin in COVID-19 Treatment, Journal of Inflammation, Vol. 18, No. 1, 2021, pp. 3-12, https://doi.org/10.1186/s12950-021-00268-6.[77] M. Smith, J. C. Smith, Repurposing Therapeutics for COVID-19: Supercomputer-based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-human ACE2 Interface, ChemRxiv, 2020, pp. 1-28, https://doi.org/10.26434/chemrxiv.11871402.v4.[78] S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, S. Soetjipto, Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study, Preprints, 2020, pp. 1-14, https://doi.org/10.20944/preprints202003.0226.v1.[79] J. M. Calderón Montaño, E. B. Morón, C. P. Guerrero, M. L. Lázaro, A Review on the Dietary Flavonoid Kaempferol, Mini Reviews in Medicinal Chemistry, Vol. 11, No. 4, 2011, pp. 298-344, https://doi.org/10.2174/138955711795305335.[80] A. Y. Chen, Y. C. Chen, A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention, Food Chem, Vol. 138, No. 4, 2013, pp. 2099-2107, https://doi.org/10.1016/j.foodchem.2012.11.139.[81] S. Schwarz, D. Sauter, W. Lu, K. Wang, B. Sun, T. Efferth et al., Coronaviral Ion Channels as Target for Chinese Herbal Medicine, Forum on Immunopathological Diseases and Therapeutics, Vol. 3, No. 1, 2012, pp. 1-13, https://doi.org/10.1615/ForumImmunDisTher.2012004378.[82] R. Zhang, X. Ai, Y. Duan, M. Xue, W. He, C. Wang et al., Kaempferol Ameliorates H9N2 Swine Influenza Virus-induced Acute Lung Injury by Inactivation of TLR4/MyD88-mediated NF-κB and MAPK Signaling Pathways, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, Vol. 89, 2017, pp. 660-672, https://doi.org/10.1016/j.biopha.2017.02.081.[83] K. W. Chan, V. T. Wong, S. C. W. Tang, COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease, The American Journal of Chinese medicine, Vol. 48, No. 3, 2020, pp. 737-762, https://doi.org/10.1142/S0192415X20500378.[84] Y. F. Huang, C. Bai, F. He, Y. Xie, H. Zhou, Review on the Potential Action Mechanisms of Chinese Medicines in Treating Coronavirus Disease 2019 (COVID-19), Pharmacological Research, Vol. 158, No. 104939, 2020, pp. 1-10, https://doi.org/10.1016/j.phrs.2020.104939.[85] L. Xu, X. Zheng, Y. Wang, Q. Fan, M. Zhang, R. Li et al., Berberine Protects Acute Liver Failure in Mice Through Inhibiting Inflammation and Mitochondria-dependent Apoptosis, European Journal of Pharmacology, Vol. 819, 2018, pp. 161-168, https://doi.org/10.1016/j.ejphar.2017.11.013.[86] X. Chen, H. Guo, Q. Li, Y. Zhang, H. Liu, X. Zhang et al., Protective Effect of Berberine on Aconite‑induced Myocardial Injury and the Associated Mechanisms, Molecular Medicine Reports, Vol. 18, No. 5, 2018, pp. 4468-4476, https://doi.org/10.3892/mmr.2018.9476.[87] K. Hayashi, K. Minoda, Y. Nagaoka, T. Hayashi, S. Uesato, Antiviral Activity of Berberine and Related Compounds Against Human Cytomegalovirus, Bioorganic & Medicinal Chemistry Letters, Vol. 17, No. 6, 2007, pp. 1562-1564, https://doi.org/10.1016/j.bmcl.2006.12.085.[88] A. Warowicka, R. Nawrot, A. Gozdzicka Jozefiak, Antiviral Activity of Berberine, Archives of Virology, Vol. 165, No. 9, 2020, pp. 1935-1945, https://doi.org/10.1007/s00705-020-04706-3.[89] Z. Z. Wang, K. Li, A. R. Maskey, W. Huang, A. A. Toutov, N. Yang et al., A Small Molecule Compound Berberine as an Orally Active Therapeutic Candidate Against COVID-19 and SARS: A Computational and Mechanistic Study, FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, Vol. 35, No. 4, 2021, pp. e21360-21379, https://doi.org/10.1096/fj.202001792R.[90] A. Pizzorno, B. Padey, J. Dubois, T. Julien, A. Traversier, V. Dulière et al., In Vitro Evaluation of Antiviral Activity of Single and Combined Repurposable Drugs Against SARS-CoV-2, Antiviral Research, Vol. 181, No. 104878, 2020, https://doi.org/10.1016/j.antiviral.2020.104878.[91] B. Y. Zhang, M. Chen, X. C. Chen, K. Cao, Y. You, Y. J. Qian et al., Berberine Reduces Circulating Inflammatory Mediators in Patients with Severe COVID-19, The British Journal of Surgery, Vol. 108, No. 1, 2021, pp. e9-e11, https://doi.org/10.1093/bjs/znaa021.[92] K. P. Latté, K. E. Appel, A. Lampen, Health Benefits and Possible Risks of Broccoli - an Overview, Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association, Vol. 49, No. 12, 2011, pp. 3287-3309, https://doi.org/10.1016/j.fct.2011.08.019.[93] C. Sturm, A. E. Wagner, Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways, International Journal of Molecular Sciences, Vol. 18, No. 9, 2017, pp. 1890-1911, https://doi.org/10.3390/ijms18091890.[94] R. T. Ruhee, S. Ma, K. Suzuki, Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages, Antioxidants (Basel, Switzerland), Vol. 8, No. 12, 2019, pp. 577-589, https://doi.org/10.3390/antiox8120577.[95] S. M. Ahmed, L. Luo, A. Namani, X. J. Wang, X. Tang, Nrf2 Signaling Pathway: Pivotal Roles in Inflammation, Biochimica et Biophysica Acta Molecular Basis of Disease, Vol. 1863, No. 2, 2017, pp. 585-597, https://doi.org/10.1016/j.bbadis.2016.11.005.[96] Z. Sun, Z. Niu, S. Wu, S. Shan, Protective Mechanism of Sulforaphane in Nrf2 and Anti-Lung Injury in ARDS Rabbits, Experimental Therapeutic Medicine, Vol. 15, No. 6, 2018, pp. 4911-4951, https://doi.org/10.3892/etm.2018.6036.[97] H. Y. Cho, F. Imani, L. Miller DeGraff, D. Walters, G. A. Melendi, M. Yamamoto et al., Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease, American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 2, 2009, pp. 138-150, https://doi.org/10.1164/rccm.200804-535OC.[98] M. J. Kesic, S. O. Simmons, R. Bauer, I. Jaspers, Nrf2 Expression Modifies Influenza A Entry and Replication in Nasal Epithelial Cells, Free Radical Biology & Medicine, Vol. 51, No. 2, 2011, pp. 444-453, https://doi.org/10.1016/j.freeradbiomed.2011.04.027.[99] A. Cuadrado, M. Pajares, C. Benito, J. J. Villegas, M. Escoll, R. F. Ginés et al., Can Activation of NRF2 Be a Strategy Against COVID-19?, Trends in Pharmacological Sciences, Vol. 41, No. 9, 2020, pp. 598-610, https://doi.org/10.1016/j.tips.2020.07.003.[100] J. Gasparello, E. D'Aversa, C. Papi, L. Gambari, B. Grigolo, M. Borgatti et al., Sulforaphane Inhibits the Expression of Interleukin-6 and Interleukin-8 Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein, Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, Vol. 87, No. 53583, 2021, https://doi.org/10.1016/j.phymed.2021.153583.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kuang, Lanlan. « Staging the Silk Road Journey Abroad : The Case of Dunhuang Performative Arts ». M/C Journal 19, no 5 (13 octobre 2016). http://dx.doi.org/10.5204/mcj.1155.

Texte intégral
Résumé :
The curtain rose. The howling of desert wind filled the performance hall in the Shanghai Grand Theatre. Into the center stage, where a scenic construction of a mountain cliff and a desert landscape was dimly lit, entered the character of the Daoist priest Wang Yuanlu (1849–1931), performed by Chen Yizong. Dressed in a worn and dusty outfit of dark blue cotton, characteristic of Daoist priests, Wang began to sweep the floor. After a few moments, he discovered a hidden chambre sealed inside one of the rock sanctuaries carved into the cliff.Signaled by the quick, crystalline, stirring wave of sound from the chimes, a melodious Chinese ocarina solo joined in slowly from the background. Astonished by thousands of Buddhist sūtra scrolls, wall paintings, and sculptures he had just accidentally discovered in the caves, Priest Wang set his broom aside and began to examine these treasures. Dawn had not yet arrived, and the desert sky was pitch-black. Priest Wang held his oil lamp high, strode rhythmically in excitement, sat crossed-legged in a meditative pose, and unfolded a scroll. The sound of the ocarina became fuller and richer and the texture of the music more complex, as several other instruments joined in.Below is the opening scene of the award-winning, theatrical dance-drama Dunhuang, My Dreamland, created by China’s state-sponsored Lanzhou Song and Dance Theatre in 2000. Figure 1a: Poster Side A of Dunhuang, My Dreamland Figure 1b: Poster Side B of Dunhuang, My DreamlandThe scene locates the dance-drama in the rock sanctuaries that today are known as the Dunhuang Mogao Caves, housing Buddhist art accumulated over a period of a thousand years, one of the best well-known UNESCO heritages on the Silk Road. Historically a frontier metropolis, Dunhuang was a strategic site along the Silk Road in northwestern China, a crossroads of trade, and a locus for religious, cultural, and intellectual influences since the Han dynasty (206 B.C.E.–220 C.E.). Travellers, especially Buddhist monks from India and central Asia, passing through Dunhuang on their way to Chang’an (present day Xi’an), China’s ancient capital, would stop to meditate in the Mogao Caves and consult manuscripts in the monastery's library. At the same time, Chinese pilgrims would travel by foot from China through central Asia to Pakistan, India, Nepal, Bangladesh, and Sri Lanka, playing a key role in the exchanges between ancient China and the outside world. Travellers from China would stop to acquire provisions at Dunhuang before crossing the Gobi Desert to continue on their long journey abroad. Figure 2: Dunhuang Mogao CavesThis article approaches the idea of “abroad” by examining the present-day imagination of journeys along the Silk Road—specifically, staged performances of the various Silk Road journey-themed dance-dramas sponsored by the Chinese state for enhancing its cultural and foreign policies since the 1970s (Kuang).As ethnomusicologists have demonstrated, musicians, choreographers, and playwrights often utilise historical materials in their performances to construct connections between the past and the present (Bohlman; Herzfeld; Lam; Rees; Shelemay; Tuohy; Wade; Yung: Rawski; Watson). The ancient Silk Road, which linked the Mediterranean coast with central China and beyond, via oasis towns such as Samarkand, has long been associated with the concept of “journeying abroad.” Journeys to distant, foreign lands and encounters of unknown, mysterious cultures along the Silk Road have been documented in historical records, such as A Record of Buddhist Kingdoms (Faxian) and The Great Tang Records on the Western Regions (Xuanzang), and illustrated in classical literature, such as The Travels of Marco Polo (Polo) and the 16th century Chinese novel Journey to the West (Wu). These journeys—coming and going from multiple directions and to different destinations—have inspired contemporary staged performance for audiences around the globe.Home and Abroad: Dunhuang and the Silk RoadDunhuang, My Dreamland (2000), the contemporary dance-drama, staged the journey of a young pilgrim painter travelling from Chang’an to a land of the unfamiliar and beyond borders, in search for the arts that have inspired him. Figure 3: A scene from Dunhuang, My Dreamland showing the young pilgrim painter in the Gobi Desert on the ancient Silk RoadFar from his home, he ended his journey in Dunhuang, historically considered the northwestern periphery of China, well beyond Yangguan and Yumenguan, the bordering passes that separate China and foreign lands. Later scenes in Dunhuang, My Dreamland, portrayed through multiethnic music and dances, the dynamic interactions among merchants, cultural and religious envoys, warriors, and politicians that were making their own journey from abroad to China. The theatrical dance-drama presents a historically inspired, re-imagined vision of both “home” and “abroad” to its audiences as they watch the young painter travel along the Silk Road, across the Gobi Desert, arriving at his own ideal, artistic “homeland”, the Dunhuang Mogao Caves. Since his journey is ultimately a spiritual one, the conceptualisation of travelling “abroad” could also be perceived as “a journey home.”Staged more than four hundred times since it premiered in Beijing in April 2000, Dunhuang, My Dreamland is one of the top ten titles in China’s National Stage Project and one of the most successful theatrical dance-dramas ever produced in China. With revenue of more than thirty million renminbi (RMB), it ranks as the most profitable theatrical dance-drama ever produced in China, with a preproduction cost of six million RMB. The production team receives financial support from China’s Ministry of Culture for its “distinctive ethnic features,” and its “aim to promote traditional Chinese culture,” according to Xu Rong, an official in the Cultural Industry Department of the Ministry. Labeled an outstanding dance-drama of the Chinese nation, it aims to present domestic and international audiences with a vision of China as a historically multifaceted and cosmopolitan nation that has been in close contact with the outside world through the ancient Silk Road. Its production company has been on tour in selected cities throughout China and in countries abroad, including Austria, Spain, and France, literarily making the young pilgrim painter’s “journey along the Silk Road” a new journey abroad, off stage and in reality.Dunhuang, My Dreamland was not the first, nor is it the last, staged performances that portrays the Chinese re-imagination of “journeying abroad” along the ancient Silk Road. It was created as one of many versions of Dunhuang bihua yuewu, a genre of music, dance, and dramatic performances created in the early twentieth century and based primarily on artifacts excavated from the Mogao Caves (Kuang). “The Mogao Caves are the greatest repository of early Chinese art,” states Mimi Gates, who works to increase public awareness of the UNESCO site and raise funds toward its conservation. “Located on the Chinese end of the Silk Road, it also is the place where many cultures of the world intersected with one another, so you have Greek and Roman, Persian and Middle Eastern, Indian and Chinese cultures, all interacting. Given the nature of our world today, it is all very relevant” (Pollack). As an expressive art form, this genre has been thriving since the late 1970s contributing to the global imagination of China’s “Silk Road journeys abroad” long before Dunhuang, My Dreamland achieved its domestic and international fame. For instance, in 2004, The Thousand-Handed and Thousand-Eyed Avalokiteśvara—one of the most representative (and well-known) Dunhuang bihua yuewu programs—was staged as a part of the cultural program during the Paralympic Games in Athens, Greece. This performance, as well as other Dunhuang bihua yuewu dance programs was the perfect embodiment of a foreign religion that arrived in China from abroad and became Sinicized (Kuang). Figure 4: Mural from Dunhuang Mogao Cave No. 45A Brief History of Staging the Silk Road JourneysThe staging of the Silk Road journeys abroad began in the late 1970s. Historically, the Silk Road signifies a multiethnic, cosmopolitan frontier, which underwent incessant conflicts between Chinese sovereigns and nomadic peoples (as well as between other groups), but was strongly imbued with the customs and institutions of central China (Duan, Mair, Shi, Sima). In the twentieth century, when China was no longer an empire, but had become what the early 20th-century reformer Liang Qichao (1873–1929) called “a nation among nations,” the long history of the Silk Road and the colourful, legendary journeys abroad became instrumental in the formation of a modern Chinese nation of unified diversity rooted in an ancient cosmopolitan past. The staged Silk Road theme dance-dramas thus participate in this formation of the Chinese imagination of “nation” and “abroad,” as they aestheticise Chinese history and geography. History and geography—aspects commonly considered constituents of a nation as well as our conceptualisations of “abroad”—are “invariably aestheticized to a certain degree” (Bakhtin 208). Diverse historical and cultural elements from along the Silk Road come together in this performance genre, which can be considered the most representative of various possible stagings of the history and culture of the Silk Road journeys.In 1979, the Chinese state officials in Gansu Province commissioned the benchmark dance-drama Rain of Flowers along the Silk Road, a spectacular theatrical dance-drama praising the pure and noble friendship which existed between the peoples of China and other countries in the Tang dynasty (618-907 C.E.). While its plot also revolves around the Dunhuang Caves and the life of a painter, staged at one of the most critical turning points in modern Chinese history, the work as a whole aims to present the state’s intention of re-establishing diplomatic ties with the outside world after the Cultural Revolution. Unlike Dunhuang, My Dreamland, it presents a nation’s journey abroad and home. To accomplish this goal, Rain of Flowers along the Silk Road introduces the fictional character Yunus, a wealthy Persian merchant who provides the audiences a vision of the historical figure of Peroz III, the last Sassanian prince, who after the Arab conquest of Iran in 651 C.E., found refuge in China. By incorporating scenes of ethnic and folk dances, the drama then stages the journey of painter Zhang’s daughter Yingniang to Persia (present-day Iran) and later, Yunus’s journey abroad to the Tang dynasty imperial court as the Persian Empire’s envoy.Rain of Flowers along the Silk Road, since its debut at Beijing’s Great Hall of the People on the first of October 1979 and shortly after at the Theatre La Scala in Milan, has been staged in more than twenty countries and districts, including France, Italy, Japan, Thailand, Russia, Latvia, Hong Kong, Macao, Taiwan, and recently, in 2013, at the Lincoln Center for the Performing Arts in New York.“The Road”: Staging the Journey TodayWithin the contemporary context of global interdependencies, performing arts have been used as strategic devices for social mobilisation and as a means to represent and perform modern national histories and foreign policies (Davis, Rees, Tian, Tuohy, Wong, David Y. H. Wu). The Silk Road has been chosen as the basis for these state-sponsored, extravagantly produced, and internationally staged contemporary dance programs. In 2008, the welcoming ceremony and artistic presentation at the Olympic Games in Beijing featured twenty apsara dancers and a Dunhuang bihua yuewu dancer with long ribbons, whose body was suspended in mid-air on a rectangular LED extension held by hundreds of performers; on the giant LED screen was a depiction of the ancient Silk Road.In March 2013, Chinese president Xi Jinping introduced the initiatives “Silk Road Economic Belt” and “21st Century Maritime Silk Road” during his journeys abroad in Kazakhstan and Indonesia. These initiatives are now referred to as “One Belt, One Road.” The State Council lists in details the policies and implementation plans for this initiative on its official web page, www.gov.cn. In April 2013, the China Institute in New York launched a yearlong celebration, starting with "Dunhuang: Buddhist Art and the Gateway of the Silk Road" with a re-creation of one of the caves and a selection of artifacts from the site. In March 2015, the National Development and Reform Commission (NDRC), China’s top economic planning agency, released a new action plan outlining key details of the “One Belt, One Road” initiative. Xi Jinping has made the program a centrepiece of both his foreign and domestic economic policies. One of the central economic strategies is to promote cultural industry that could enhance trades along the Silk Road.Encouraged by the “One Belt, One Road” policies, in March 2016, The Silk Princess premiered in Xi’an and was staged at the National Centre for the Performing Arts in Beijing the following July. While Dunhuang, My Dreamland and Rain of Flowers along the Silk Road were inspired by the Buddhist art found in Dunhuang, The Silk Princess, based on a story about a princess bringing silk and silkworm-breeding skills to the western regions of China in the Tang Dynasty (618-907) has a different historical origin. The princess's story was portrayed in a woodblock from the Tang Dynasty discovered by Sir Marc Aurel Stein, a British archaeologist during his expedition to Xinjiang (now Xinjiang Uygur autonomous region) in the early 19th century, and in a temple mural discovered during a 2002 Chinese-Japanese expedition in the Dandanwulike region. Figure 5: Poster of The Silk PrincessIn January 2016, the Shannxi Provincial Song and Dance Troupe staged The Silk Road, a new theatrical dance-drama. Unlike Dunhuang, My Dreamland, the newly staged dance-drama “centers around the ‘road’ and the deepening relationship merchants and travellers developed with it as they traveled along its course,” said Director Yang Wei during an interview with the author. According to her, the show uses seven archetypes—a traveler, a guard, a messenger, and so on—to present the stories that took place along this historic route. Unbounded by specific space or time, each of these archetypes embodies the foreign-travel experience of a different group of individuals, in a manner that may well be related to the social actors of globalised culture and of transnationalism today. Figure 6: Poster of The Silk RoadConclusionAs seen in Rain of Flowers along the Silk Road and Dunhuang, My Dreamland, staging the processes of Silk Road journeys has become a way of connecting the Chinese imagination of “home” with the Chinese imagination of “abroad.” Staging a nation’s heritage abroad on contemporary stages invites a new imagination of homeland, borders, and transnationalism. Once aestheticised through staged performances, such as that of the Dunhuang bihua yuewu, the historical and topological landscape of Dunhuang becomes a performed narrative, embodying the national heritage.The staging of Silk Road journeys continues, and is being developed into various forms, from theatrical dance-drama to digital exhibitions such as the Smithsonian’s Pure Land: Inside the Mogao Grottes at Dunhuang (Stromberg) and the Getty’s Cave Temples of Dunhuang: Buddhist Art on China's Silk Road (Sivak and Hood). They are sociocultural phenomena that emerge through interactions and negotiations among multiple actors and institutions to envision and enact a Chinese imagination of “journeying abroad” from and to the country.ReferencesBakhtin, M.M. The Dialogic Imagination: Four Essays. Austin, Texas: University of Texas Press, 1982.Bohlman, Philip V. “World Music at the ‘End of History’.” Ethnomusicology 46 (2002): 1–32.Davis, Sara L.M. Song and Silence: Ethnic Revival on China’s Southwest Borders. New York: Columbia University Press, 2005.Duan, Wenjie. “The History of Conservation of Mogao Grottoes.” International Symposium on the Conservation and Restoration of Cultural Property: The Conservation of Dunhuang Mogao Grottoes and the Related Studies. Eds. Kuchitsu and Nobuaki. Tokyo: Tokyo National Research Institute of Cultural Properties, 1997. 1–8.Faxian. A Record of Buddhistic Kingdoms. Translated by James Legge. New York: Dover Publications, 1991.Herzfeld, Michael. Ours Once More: Folklore, Ideology, and the Making of Modern Greece. Austin: University of Texas Press, 1985.Kuang, Lanlan. Dunhuang bi hua yue wu: "Zhongguo jing guan" zai guo ji yu jing zhong de jian gou, chuan bo yu yi yi (Dunhuang Performing Arts: The Construction and Transmission of “China-scape” in the Global Context). Beijing: She hui ke xue wen xian chu ban she, 2016.Lam, Joseph S.C. State Sacrifice and Music in Ming China: Orthodoxy, Creativity and Expressiveness. New York: State University of New York Press, 1998.Mair, Victor. T’ang Transformation Texts: A Study of the Buddhist Contribution to the Rise of Vernacular Fiction and Drama in China. Cambridge, Mass.: Council on East Asian Studies, 1989.Pollack, Barbara. “China’s Desert Treasure.” ARTnews, December 2013. Sep. 2016 <http://www.artnews.com/2013/12/24/chinas-desert-treasure/>.Polo, Marco. The Travels of Marco Polo. Translated by Ronald Latham. Penguin Classics, 1958.Rees, Helen. Echoes of History: Naxi Music in Modern China. Oxford: Oxford University Press, 2000.Shelemay, Kay Kaufman. “‘Historical Ethnomusicology’: Reconstructing Falasha Liturgical History.” Ethnomusicology 24 (1980): 233–258.Shi, Weixiang. Dunhuang lishi yu mogaoku yishu yanjiu (Dunhuang History and Research on Mogao Grotto Art). Lanzhou: Gansu jiaoyu chubanshe, 2002.Sima, Guang 司马光 (1019–1086) et al., comps. Zizhi tongjian 资治通鉴 (Comprehensive Mirror for the Aid of Government). Beijing: Guji chubanshe, 1957.Sima, Qian 司马迁 (145-86? B.C.E.) et al., comps. Shiji: Dayuan liezhuan 史记: 大宛列传 (Record of the Grand Historian: The Collective Biographies of Dayuan). Beijing: Zhonghua shuju, 1959.Sivak, Alexandria and Amy Hood. “The Getty to Present: Cave Temples of Dunhuang: Buddhist Art on China’s Silk Road Organised in Collaboration with the Dunhuang Academy and the Dunhuang Foundation.” Getty Press Release. Sep. 2016 <http://news.getty.edu/press-materials/press-releases/cave-temples-dunhuang-buddhist-art-chinas-silk-road>.Stromberg, Joseph. “Video: Take a Virtual 3D Journey to Visit China's Caves of the Thousand Buddhas.” Smithsonian, December 2012. Sep. 2016 <http://www.smithsonianmag.com/smithsonian-institution/video-take-a-virtual-3d-journey-to-visit-chinas-caves-of-the-thousand-buddhas-150897910/?no-ist>.Tian, Qing. “Recent Trends in Buddhist Music Research in China.” British Journal of Ethnomusicology 3 (1994): 63–72.Tuohy, Sue M.C. “Imagining the Chinese Tradition: The Case of Hua’er Songs, Festivals, and Scholarship.” Ph.D. Dissertation. Indiana University, Bloomington, 1988.Wade, Bonnie C. Imaging Sound: An Ethnomusicological Study of Music, Art, and Culture in Mughal India. Chicago: University of Chicago Press, 1998.Wong, Isabel K.F. “From Reaction to Synthesis: Chinese Musicology in the Twentieth Century.” Comparative Musicology and Anthropology of Music: Essays on the History of Ethnomusicology. Eds. Bruno Nettl and Philip V. Bohlman. Chicago: University of Chicago Press, 1991. 37–55.Wu, Chengen. Journey to the West. Tranlsated by W.J.F. Jenner. Beijing: Foreign Languages Press, 2003.Wu, David Y.H. “Chinese National Dance and the Discourse of Nationalization in Chinese Anthropology.” The Making of Anthropology in East and Southeast Asia. Eds. Shinji Yamashita, Joseph Bosco, and J.S. Eades. New York: Berghahn, 2004. 198–207.Xuanzang. The Great Tang Dynasty Record of the Western Regions. Hamburg: Numata Center for Buddhist Translation & Research, 1997.Yung, Bell, Evelyn S. Rawski, and Rubie S. Watson, eds. Harmony and Counterpoint: Ritual Music in Chinese Context. Stanford: Stanford University Press, 1996.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Zhong yi zhen duan xue"

1

Choi, Yuen-sai Pauline. « The teaching of Chinese speaking skills for form one students the application of mind-mapping in individual presentation = Zhong xue yi nian ji Zhong wen shuo hua jiao xue yan jiu : nao tu zai ge ren duan jiang zhong zhi ying yong / ». Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37328785.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhang, Qiong. « Ambivalence & ; ambiguity Chinese-American literature beyond politics and ethnography = Mao dun qing jie yu yi shu mo hu xing : chao yue zheng zhi he zu yi de Meiguo Hua yi wen xue / ». Shanghai : Fu dan da xue chu ban she, 2006. http://books.google.com/books?id=cQ1IAAAAMAAJ.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tang, Wing-sze Cecilia. « A study of paragraphing in Chinese writing primary 1 to primary 6 students in H.K. = Zhong wen xie zuo : duan luo yan jiu : Xianggang xiao yi zhi xiao liu duan luo mo shi de fa zhan jie duan / ». Click to view the E-thesis via HKUTO, 2002. http://sunzi.lib.hku.hk/hkuto/record/B31963213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Deng, Yong-shi. « A study of paragraphing in Chinese writing : primary 1 to primary 6 students in H.K. = Zhong wen xie zuo : duan luo yan jiu : Xianggang xiao yi zhi xiao liu duan luo mo shi de fa zhan jie duan / ». Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25248935.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Zhong yi zhen duan xue"

1

Zhong yi zhen duan xue. Taibei Shi : Dong da tu shu gu fen you xian gong si, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhengdu Zhong yi xue yuan. Zi gao ban gong shi., dir. Zhong yi zhen duan xue. Chengdu : Sichuan ke xue ji shu chu ban she, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

qin, Wang yi. Zhong yi zhen duan xue. Bei jing : Ke xue chu ban she, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liu, Jiayi. Zhong yi zhen duan xue. Shanghai : Shanghai Zhong yi xue yuan chu ban she, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhong yi zhen duan xue. Beijing Shi : Zhongguo Zhong yi yao chu ban she, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhaoqin, Fang, et Cheng Panji, dir. Yi bai tian xue Zhong yi zhen duan. 2e éd. Shanghai : Shanghai ke xue ji shu chu ban she, 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yulong, Zhou, et Guo Zhenqiu, dir. Zhong yi zhen duan xue ti jie. Beijing : Zhong yi gu ji chu ban she, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhong yi zhen duan xue shi shi lun. Beijing Shi : Xue yuan chu ban she, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jianzhang, Chen, dir. Zhong yi 150 zheng hou bian zheng lun zhi ji yao. Beijing Shi : Xue yuan chu ban she, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

xiu, Duan jian, dir. Zhong kao yi xi ti zhen duan : Ying yu. 3e éd. Zhong qing : Zhong qing chu ban she, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie