Sommaire
Littérature scientifique sur le sujet « Zones tampons humides artificielles »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Zones tampons humides artificielles ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Zones tampons humides artificielles"
Tournebize, J., E. Passeport, C. Chaumont et U. Mander. « Efficacité des zones tampons humides artificielles pour la dissipation des nitrates et des pesticides dans un contexte de drainage agricole ». Techniques Sciences Méthodes, no 12 (2014) : 40–58. http://dx.doi.org/10.1051/tsm/201412040.
Texte intégralAmalric, Marion. « Rapports à la nature, modes d’habiter et ingénierie écologique :les zones humides artificielles comme symboles de l’écologisation de l’action environnementale ». Bulletin de l'Association de géographes français 96, no 2 (10 octobre 2019) : 181–201. http://dx.doi.org/10.4000/bagf.4852.
Texte intégralDe Nardi, Frédéric, Christophe Puaud, Thierry Lodé, Josiane Lecorff, Bernard Parinet et Maxime Pontié. « Diagnostic préliminaire et perspectives d’élimination du phosphore (P) en excès dans le lac de Ribou (Cholet, Maine-et-Loire, France) ». 23, no 2 (7 juin 2010) : 159–71. http://dx.doi.org/10.7202/039907ar.
Texte intégralThèses sur le sujet "Zones tampons humides artificielles"
Michel, Alexandre. « Synchronismes et antagonismes dans les relations entre environnement agricole, biodiversité, et fonctions écologiques dans les zones tampons humides artificielles ». Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASB016.
Texte intégralAgrochemicals, including pesticides and nitrates, can be transferred to the hydrosphere, with adverse effects on organisms and aquatic ecosystems. Constructed wetlands (CWs) can be implemented in the agricultural landscape to reduce the transfer of agrochemicals to the hydrosphere through their natural purification properties. However, although their primary aim is to reduce pollution of the aquatic environment, paradoxically, CWs can act as interceptors and concentrators of pesticides and nitrates, with the negative repercussions that these contaminants can have on aquatic organisms, making CWs potential ecological traps for aquatic fauna. By studying a pilot site located in Seine-et-Marne (France) and subject to water quality monitoring since 2012, the present thesis aims to assess the potential for an agricultural CW to act as an ecological trap for amphibians and aquatic invertebrates.Through a series of multi-level, in situ ecological and ecotoxicological monitoring studies, the results obtained tend to show that the risk induced by agrochemical fluxes in the CW is notable for amphibians, and that negative sub-cellular, behavioral, and ecological effects are exerted on aquatic fauna. This work provides a better understanding of the potential impacts of agricultural contaminant fluxes on aquatic fauna in CWs
Vallée, Romain. « Efficacité de zones tampons humides à réduire les teneurs en pesticides des eaux de drainage ». Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0069/document.
Texte intégralIn Lorraine, the drainage of clay soils contributes to transfer of agricultural inputs (pesticides and fertilizers) towards surface waters. In this case, the regulatory grass strips (CAP regulation) installed along rivers are bypassed and no longer effective in purifying surface water. Thus, constructed wetlands (CWs) are recommended to take over grass cover bands. Generally, these CWs are installed at watershed scale or at that of several plots and they are therefore quite huge, making them competitive in the cultivated land. The objective of this project is to assess the effectiveness of two small CW, installed in the grass cover band between the drained plot and the river. For this, a multi-scale approach was set up integrating laboratory experiments in batch, pilot study taking into account the water dynamics and monitoring at field scale. The effectiveness of CW was assessed during the 2012/13 and 2013/14 drainage seasons. The nitrate and 79 pesticides concentrations were monitored at inlet and outlet of CWs and in various substrates (soils, sediment, straw and plants). For both devices, the removal efficiencies measured for nitrate were stable and ranged from 5.4 to 10.9 % of inlet amounts while the reduction of pesticide flows was very variable, ranging from -618.5 to 100 %. This variability was explained by four distinct behaviors. The high negative efficiency values were attributed to neighboured runoff events after heavy rains, for soluble molecules such as 2,4-MCPA or isoproturon. For both molecules, the sorption study showed low affinity for environmental substrates, facilitating their transport by runoff and drainage water. Other molecules such as boscalid or OH-atrazine showed effectiveness close to 0 %. For boscalid, this behavior has been observed in laboratory sorption and pilots studies, in agreement with its strong adsorption and desorption capacities. Finally, some molecules have shown reductions ranging from 9.9 to 100 %, in agreement with their low persistence (2,4-MCPA, clopyralid, mesosulfuron-methyl, ...) or their high affinity for environmental substrates (diflufenican, propiconazole or propyzamide). These small CWs, located in the grass cover bands, are effective in minimizing the contamination of surface waters by agricultural drainage water. Thus, multiplying the number of these devices at the plot scale in the agricultural landscape would reduce the contamination of surface waters by pesticides and nitrates while preserving the cultivated land. However, the effectiveness of these CWs are limited for pesticides with a low Koc and a long DT50; thus their installation in plot must not call into question the reduction in the use of pesticides
Gaullier, Céline. « Influence de l’hydraulique sur l’efficacité des zones tampons végétalisées à réduire les teneurs en pesticides et métabolites en sortie de drains agricoles ». Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0318.
Texte intégralPesticides amounts measured in agricultural drained water can reach 10 µg/L up to 395 µg/L. In Lorraine, Constructed Wetlands (CW) were set up between drained fields and the river to limit pesticide release. The aim of this study was to evaluate the influence of hydraulic on the mitigation of pesticides and metabolites in both dissolved and particulate phases of drained water, by discriminating associated processes. To do so, a multi-scale approach was performed by integrating both laboratory experiments, such as batch and dynamic conditions in pilots, and a plurennial monitoring of two different ZTVA (ditch and pond). In-situ tracing experiments highlighted that the volume of CW was not homogeneous, independently of the flow rate. CW are divided in two hydraulic zones: a main channel and isolated areas. Moreover, these two zones behave differently regarding pesticides mitigation. Annual mitigation efficiency in both of the CW studied, vary between (i) -1176 % and 96 % for dissolved pesticides, (ii) -20 % and 3 % for dissolved metabolites (chloroacetanilides), and from (iii) -580 % to 79 % for particulate pesticides. Adsorption on sediments allows the mitigation of dissolved pesticides whose adsorption coefficient (Koc) varied from 364 to 1424 L/g (mitigation ranging from 7 to 65 %), and occurred mainly in isolated areas. However, this process is reversible and desorption can explain negative efficiency measured on the field. Additionally, hydrophilic pesticides (Koc between 54 and 401 L/g) and metabolites (Koc between 0 and 0.77 L/g) are few or not mitigated (mitigation ranging from -20 and 8 %). Finally, pesticides entering CW under particulate phase are mitigated through sedimentation of total suspended solids, higher in isolated areas than in main channel. This process is also reversible, leading to sediments resuspension. Otherwise, inlet flow rates vary throughout the year, which could allow a variation of pesticide mitigation. Indeed, batch and pilots studies highlighted the influence of hydrodynamic (flow rate, etc) on mitigation of dissolved pesticides. CW act as a sink (adsorption and sedimentation) and a source (desorption and resuspension) towards specific dissolved or particulate pesticides and related to hydrodynamic of CW
Gaullier, Céline. « Influence de l’hydraulique sur l’efficacité des zones tampons végétalisées à réduire les teneurs en pesticides et métabolites en sortie de drains agricoles ». Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0318/document.
Texte intégralPesticides amounts measured in agricultural drained water can reach 10 µg/L up to 395 µg/L. In Lorraine, Constructed Wetlands (CW) were set up between drained fields and the river to limit pesticide release. The aim of this study was to evaluate the influence of hydraulic on the mitigation of pesticides and metabolites in both dissolved and particulate phases of drained water, by discriminating associated processes. To do so, a multi-scale approach was performed by integrating both laboratory experiments, such as batch and dynamic conditions in pilots, and a plurennial monitoring of two different ZTVA (ditch and pond). In-situ tracing experiments highlighted that the volume of CW was not homogeneous, independently of the flow rate. CW are divided in two hydraulic zones: a main channel and isolated areas. Moreover, these two zones behave differently regarding pesticides mitigation. Annual mitigation efficiency in both of the CW studied, vary between (i) -1176 % and 96 % for dissolved pesticides, (ii) -20 % and 3 % for dissolved metabolites (chloroacetanilides), and from (iii) -580 % to 79 % for particulate pesticides. Adsorption on sediments allows the mitigation of dissolved pesticides whose adsorption coefficient (Koc) varied from 364 to 1424 L/g (mitigation ranging from 7 to 65 %), and occurred mainly in isolated areas. However, this process is reversible and desorption can explain negative efficiency measured on the field. Additionally, hydrophilic pesticides (Koc between 54 and 401 L/g) and metabolites (Koc between 0 and 0.77 L/g) are few or not mitigated (mitigation ranging from -20 and 8 %). Finally, pesticides entering CW under particulate phase are mitigated through sedimentation of total suspended solids, higher in isolated areas than in main channel. This process is also reversible, leading to sediments resuspension. Otherwise, inlet flow rates vary throughout the year, which could allow a variation of pesticide mitigation. Indeed, batch and pilots studies highlighted the influence of hydrodynamic (flow rate, etc) on mitigation of dissolved pesticides. CW act as a sink (adsorption and sedimentation) and a source (desorption and resuspension) towards specific dissolved or particulate pesticides and related to hydrodynamic of CW
Passeport, Elodie. « Efficacité d'une zone humide artificielle et d'une zone tampon forestière pour dissiper la pollution par les pesticides dans un bassin versant agricole drainé ». Phd thesis, AgroParisTech, 2010. http://pastel.archives-ouvertes.fr/pastel-00542351.
Texte intégralJohansson, Elisabeth. « Constructed wetlands and deconstructed discourses : greenhouse gas fluxes and discourses on purifying capacities / ». Linköping : Univ, 2002. http://www.bibl.liu.se/liupubl/disp/disp2002/arts253s.pdf.
Texte intégralBouffard, Vicky. « Milieux humides artificiels pour l'amélioration de l'efficacité de traitement des eaux usées domestiques d'une petite municipalité ». Sherbrooke : Université de Sherbrooke, 2000.
Trouver le texte intégralMarchand, Lilian. « Phytoremédiation en zones humides construites d'eaux contaminées au cuivre ». Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14691/document.
Texte intégralThis work aims at characterizing environmental compartments (i.e. water, soil and soil pore water, substrate, macrophytes at the individual and community scale) and their functioning to in fine improve the effectiveness of constructed wetlands (CW) for cleaning Cu-contaminated waters. Knowledge on the homeostasis of Cu in plants and its phytotoxicity at medium and high exposures are summarized. The main physico-chemical and biological mechanisms involved in the phytoremediation of Cu-contaminated water in CW are discussed. Several aided-phytostabilisation options were in situ evaluated in lysimeters at a Cu-contaminated wood preservation site to assess the potential of four amendments to sorb Cu in a CW substrate. Concentrations of potentially toxic trace elements (PTTE, including Cu) and macronutrients of leachates migrating from the root zone to the aquifers were quantified. Based on the responses of Lemna minor L. used as a bioindicator, exposed to the leachates,.Linz-Donawitz slag spiked with P (LDS, 1%) best performed to sorb labile Cu in the root zone. In parallel, macrophyte communities were monitored along the Jalle Eysines River, an urban river slightly contaminated by Cu and other PTTE. The PTTE concentrations were determined in the soil, water, soil pore water, and in the leaves of seven macrophyte species. A multivariate statistical model was developed based on the foliar PTTE concentrations for biomonitoring macrophyte exposures. Populations of macrophytes were also collected in wetlands displaying an increasing Cu contamination in Europe (France, Spain, Portugal, and Italy), Belarus and Australia. Root production of macrophytes exposed for 3 weeks at increasing Cu concentrations (0.08, 2.5, 5, 15 and 25 µM Cu) shows an intra-specific variability of Cu tolerance in populations of Juncus effusus, Schoenoplectus lacustris and Phalaris arundinacea. In contrast, a similar response to constitutive tolerance occurred for Typha latifolia and Iris pseudacorus, two species with high production of rhizomes. The rhizome influence is discussed. Phragmites australis also produces rhizomes but showed intra-specific variability in response to Cu exposure. In a CW at mesocosm scale (110 dm3), up to 99% of Cu in water (initial concentration: 2.5μM Cu) was removed after 2 weeks in the three modalities planted with Juncus articulatus, P. arundinacea and P. australis, and in the unplanted control. The influences of microbial biofilms, the substrate, and the macrophyte species and their interactions in CW are discussed. The selection of PTTE-tolerant macrophytes for their used in CW and the understanding of molecular mechanisms underlying the intra-specific variability in PTTE- tolerance, i.e for P. australis, require further investigations
Liu, Ling. « La selection d'un milieu filtrant utilisé dans un marais artificiel pour la déphosphatation des eaux usées municipales / ». Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1996. http://theses.uqac.ca.
Texte intégralPulou, Jérémy. « Les anciennes cressonnières de l'Essonne : Effets de la recolonisation des zones humides artificielles sur la dynamique de l'azote ». Phd thesis, AgroParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00910075.
Texte intégralLivres sur le sujet "Zones tampons humides artificielles"
George, Mulamoottil, McBean Edward A et Rovers Frank, dir. Constructed wetlands for the treatment of landfill leachates. Boca Raton : Lewis Publishers, 1999.
Trouver le texte intégralLe, Boudec Bertrand, dir. Waterscapes : El tratamiento de aguas residuales mediante sistemas vegetales = using plant systems to treat wastewater. Barcelona : G. Gili, 2003.
Trouver le texte intégralJ, Alloway Brian, Kröpfelová Lenka, Trevors Jack T. 1953- et SpringerLink (Online service), dir. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow. Dordrecht : Springer Science + Business Media B.V, 2008.
Trouver le texte intégralNavarro-Frómeta, Amado Enrique, Josep M. Bayona et María del Carmen Durán Domínguez de Bazúa. Artificial or Constructed Wetlands. Taylor & Francis Group, 2021.
Trouver le texte intégralBayona, Josep M., Amado Enrique Navarro-ómeta et María-del-Carmen Durán-Domínguez-de-Bazúa. Artificial or Constructed Wetlands : A Suitable Technology for Sustainable Water Management. Taylor & Francis Group, 2018.
Trouver le texte intégralBayona, Josep M., Amado Enrique Navarro-ómeta et María-del-Carmen Durán-Domínguez-de-Bazúa. Artificial or Constructed Wetlands : A Suitable Technology for Sustainable Water Management. Taylor & Francis Group, 2018.
Trouver le texte intégralBayona, Josep M., Amado Enrique Navarro-ómeta et María-del-Carmen Durán-Domínguez-de-Bazúa. Artificial or Constructed Wetlands : A Suitable Technology for Sustainable Water Management. Taylor & Francis Group, 2018.
Trouver le texte intégralArtificial or Constructed Wetlands : A Suitable Technology for Sustainable Water Management. Taylor & Francis Group, 2018.
Trouver le texte intégralMcBean, Edward A., George Mulamoottil et Frank Rovers. Constructed Wetlands for the Treatment of Landfill Leachates. CRC, 1998.
Trouver le texte intégralConstructed Wetlands and Sustainable Development. Taylor & Francis Group, 2016.
Trouver le texte intégral