Indice

  1. Tesi

Letteratura scientifica selezionata sul tema "Algebraic kernel"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Algebraic kernel".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Tesi sul tema "Algebraic kernel"

1

Bhattacharjee, Papiya. "Minimal Prime Element Space of an Algebraic Frame." Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1243364652.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Peñaranda, Luis. "Géométrie algorithmique non linéaire et courbes algébriques planaires." Electronic Thesis or Diss., Nancy 2, 2010. http://www.theses.fr/2010NAN23002.

Testo completo
Abstract (sommario):
Nous abordons dans cette thèse le problème du calcul de la topologie de courbes algébriques planes. Nous présentons un algorithme qui, grâce à l’application d’outils algébriques comme les bases de Gröbner et les représentations rationnelles univariées, ne nécessite pas de traitement particulier de cas dégénérés. Nous avons implanté cet algorithme et démontré son efficacité par un ensemble de comparaisons avec les logiciels similaires. Nous présentons également une analyse de complexité sensible a la sortie de cet algorithme. Nous discutons ensuite des outils nécessaires pour l’implantation d’algorithmes de géométrie non-linéaire dans CGAL, la bibliothèque de référence de la communauté de géométrie algorithmique. Nous présentons un noyau univarié pour CGAL, un ensemble de fonctions nécessaires pour le traitement d’objets courbes définis par des polynômes univariés. Nous avons validé notre approche en la comparant avec les implantations similaires<br>We tackle in this thesis the problem of computing the topology of plane algebraic curves. We present an algorithm that avoids special treatment of degenerate cases, based on algebraic tools such as Gröbner bases and rational univariate representations. We implemented this algorithm and showed its performance by comparing to simi- lar existing programs. We also present an output-sensitive complexity analysis of this algorithm. We then discuss the tools that are necessary for the implementation of non- linear geometric algorithms in CGAL, the reference library in the computational geom- etry community. We present an univariate algebraic kernel for CGAL, a set of functions aimed to handle curved objects defined by univariate polynomials. We validated our approach by comparing it to other similar implementations
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Laske, Michael. "Le K1 des courbes sur les corps globaux : conjecture de Bloch et noyaux sauvages." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13861/document.

Testo completo
Abstract (sommario):
Pour X une courbe sur un corps global k, lisse, projective et géométriquement connexe, nous déterminons la Q-structure du groupe de Quillen K1(X) : nous démontrons que dimQ K1(X) ? Q =2r, où r désigne le nombre de places archimédiennes de k (y compris le cas r = 0 pour un corps de fonctions). Cela con?rme une conjecture de Bloch annoncée dans les années 1980. Dans le langage de la K-théorie de Milnor, que nous dé?nissons pour les variétés algébriques via les groupes de Somekawa, le premier K-groupe spécial de Milnor SKM1 (X) est de torsion. Pour la preuve, nous développons une théorie des hauteurs applicable aux K-groupes de Milnor, et nous généralisons l’approche de base de facteurs de Bass-Tate. Une structure plus ?ne de SKM 1 (X) émerge en localisant le corps de base k, et une description explicite de la décomposition correspondante est donnée. En particulier, nous identi?ons un sous-groupe WKl(X):= ker (SKM 1 (X) ? Zl ? Lv SKM 1 (Xv) ? Zl) pour chaque entier rationnel l, nommé noyau sauvage, dont nous croyons qu’il est ?ni<br>For a smooth projective geometrically connected curve X over a global ?eld k, we determine the Q-structure of its ?rst Quillen K-group K1(X) by showing that dimQ K1(X) ? Q =2r, where r denotes the number of archimedean places of k (including the case r = 0 for k a function ?eld). This con?rms a conjecture of Bloch. In the language of Milnor K-theory, which we de?ne for varieties via Somekawa groups, the ?rst special Milnor K-group SKM 1 (X) is torsion. For the proof, we develop a theory of heights applicable to Milnor K-groups, and generalize the factor basis approach of Bass-Tate. A ?ner structure of SKM 1 (X) emerges when localizing the ground ?eld k, and we give an explicit description of the resulting decomposition. In particular, we identify a potentially ?nite subgroup WKl(X):= ker (SKM 1 (X) ? Zl ? Lv SKM 1 (Xv) ? Zl) for each rational prime l, named wild kernel
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Sondecker, Victoria L. "Kernel-trace approach to congruences on regular and inverse semigroups." Instructions for remote access. Click here to access this electronic resource. Access available to Kutztown University faculty, staff, and students only, 1994. http://www.kutztown.edu/library/services/remote_access.asp.

Testo completo
Abstract (sommario):
Thesis (M.A.)--Kutztown University of Pennsylvania, 1994.<br>Source: Masters Abstracts International, Volume: 45-06, page: 3173. Abstract precedes thesis as [2] preliminary leaves. Typescript. Includes bibliographical references (leaves 52-53).
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Speck, Robert [Verfasser]. "Generalized Algebraic Kernels and Multipole Expansions for massively parallel Vortex Particle Methods / Robert Speck." Wuppertal : Universitätsbibliothek Wuppertal, 2011. http://d-nb.info/1018299866/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kumar, Suraj. "Scheduling of Dense Linear Algebra Kernels on Heterogeneous Resources." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0572/document.

Testo completo
Abstract (sommario):
Du fait des énormes capacités de calculs des accélérateurs tels que les GPUs et les Xeon Phi, l’utilisation de machines multicoques pourvues d’accélérateurs est devenue commune dans le domaine du calcul haute performance (HPC). La complexité induite par ces accélérateurs a suscité le développement de systèmes d’exécution à base de tâches, dans lesquels les dépendances entre les applications sont exprimées sous la forme de graphe de tâches et où les tâches sont ordonnancées dynamiquement sur les ressources de calcul. La difficulté est alors de concevoir des stratégies d’ordonnancement qui font une utilisation efficace des ressources de calculs et le développement de telles stratégies, même pour un unique noeud hybride, est un enjeu essentiel de la performance des systèmes HPC. Nous considérons dans cette thèse l’ordonnancement de noyaux d’algèbre linéaire dense sur des noeuds complètement hétérogènes et constitués de CPUs et de GPUs. Les performances relatives des accélérateurs par rapport aux coeurs classique dépend très fortement du noyau considéré. Par exemple, les accélérateurs sont beaucoup plus efficaces pour les produits de matrices, par exemple, que pour les factorisations. Dans cette thèse, nous analysons les performances de stratégies statiques et dynamiques d’ordonnancement et nous proposons un ensemble de stratégies intermédiaires, en ajoutant des composantes statiques (respectivement dynamiques) à des stratégies d’ordonnancements dynamique (respectivement statiques). Récemment, une stratégie appelée HeteroPrio a été proposée, qui s’appuie sur les affinités entre les tâches et les ressources pour un petit ensemble de tâches différentes s’exécutant sur deux types de ressources. Nous avons étendu cette stratégie d’ordonnancement pour des graphes de tâches généraux pour deux types de ressources puis pour plus de deux types. De manière complémentaire, nous avons également démontré des facteurs d’approximation et des pires cas pour HeteroPrio dans le cas d’un ensemble de tâches indépendantes sur différents types de plates-formes<br>Due to massive computation power of accelerators such as GPU, Xeon phi, multicore machines equipped with accelerators are becoming popular in High Performance Computing (HPC). The added complexity led to the development of different task-based runtime systems, which allow computations to be expressed as graphs of tasks and rely on runtime systems to schedule those tasks among all resources of the platform. The real challenge is to design efficient schedulers for such runtimes to make effective utilization of all resources. Developing good schedulers, even for a single hybrid node, and analyzing them can thus have a strong impact on the performance of current HPC systems. We consider the problem of scheduling dense linear algebra applications on fully hybrid platforms made of CPUs and GPUs. The relative performance of CPU and GPU highly depends on the sub-routine. For instance, GPUs are much more efficient to process matrix-matrix multiplications than matrix factorizations. In this thesis, we analyze the performance of static and dynamic scheduling strategies and we propose a set of intermediate strategies, by adding static (resp. dynamic) features into dynamic (resp. static) strategies. A resource centric dynamic scheduler, HeteroPrio, which is based on affinity between tasks and resources, has been proposed recently for a set of small independent tasks on two types of resources. We extend and analyze this scheduler for general task graphs first on two types of resources and then on more than two types of resources. Additionally, we provide approximation ratios and worst case examples of HeteroPrio for a set of independent tasks on different platform sizes
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Tachibana, Kanta, Takeshi Furuhashi, Tomohiro Yoshikawa, Eckhard Hitzer, and MINH TUAN PHAM. "Clustering of Questionnaire Based on Feature Extracted by Geometric Algebra." 日本知能情報ファジィ学会, 2008. http://hdl.handle.net/2237/20676.

Testo completo
Abstract (sommario):
Session ID: FR-G2-2<br>Joint 4th International Conference on Soft Computing and Intelligent Systems and 9th International Symposium on advanced Intelligent Systems, September 17-21, 2008, Nagoya University, Nagoya, Japan
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Good, Jennifer Rose. "Weighted interpolation over W*-algebras." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1843.

Testo completo
Abstract (sommario):
An operator-theoretic formulation of the interpolation problem posed by Nevanlinna and Pick in the early twentieth century asks for conditions under which there exists a multiplier of a reproducing kernel Hilbert space that interpolates a specified set of data. Paul S. Muhly and Baruch Solel have shown that their theory for operator algebras built from W*-correspondences provides an appropriate context for generalizing this classic question. Their reproducing kernel W*-correspondences are spaces of functions that generalize the reproducing kernel Hilbert spaces. Their Nevanlinna-Pick interpolation theorem, which is proved using commutant lifting, implies that the algebra of multipliers of the reproducing kernel W*-correspondence associated with a certain W*-version of the classic Szegö kernel may be identified with their primary operator algebra of interest, the Hardy algebra. To provide a context for generalizing another familiar topic in operator theory, the study of the weighted Hardy spaces, Muhly and Solel have recently expanded their theory to include operator-valued weights. This creates a new family of reproducing kernel W*-correspondences that includes certain, though not all, classic weighted Hardy spaces. It is the purpose of this thesis to generalize several of Muhly and Solel's results to the weighted setting and investigate the function-theoretic properties of the resulting spaces. We give two principal results. The first is a weighted version of Muhly and Solel's commutant lifting theorem, which we obtain by making use of Parrott's lemma. The second main result, which in fact follows from the first, is a weighted Nevanlinna-Pick interpolation theorem. Other results, several of which follow from the two primary results, include the construction of an orthonormal basis for the nonzero tensor product of two W*-corrrespondences, a double commutant theorem, the identification of several function-theoretic properties of the elements in the reproducing kernel W*-correspondence associated with a weighted W*-Szegö kernel as well as the elements in its algebra of mutlipliers, and the presentation of a relationship between this algebra of multipliers and a weighted Hardy algebra. In addition, we consider a candidate for a W*-version of the complete Pick property and investigate the aforementioned weighted W*-Szegö kernel in its light.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Shinde, Sachin Dilip. "SuperTaco : Taco Tensor Algebra kernels on distributed systems using Legion." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121683.

Testo completo
Abstract (sommario):
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019<br>Cataloged from student-submitted PDF version of thesis.<br>Includes bibliographical references (pages 89-91).<br>Tensor algebra is a powerful language for expressing computation on multidimensional data. While many tensor datasets are sparse, most tensor algebra libraries have limited support for handling sparsity. The Tensor Algebra Compiler (Taco) has introduced a taxonomy for sparse tensor formats that has allowed them to compile sparse tensor algebra expressions to performant C code, but they have not taken advantage of distributed systems. This work provides a code generation technique for creating Legion programs that distribute the computation of Taco tensor algebra kernels across distributed systems, and a scheduling language for controlling how this distributed computation is structured. This technique is implemented in the form of a command-line tool called SuperTaco. We perform a strong scaling analysis for the SpMV and TTM kernels under a row blocking distribution schedule, and find speedups of 9-10x when using 20 cores on a single node. For multi-node systems using 20 cores per node, SpMV achieves a 33.3x speedup at 160 cores and TTM achieves a 42.0x speedup at 140 cores.<br>by Sachin Dilip Shinde.<br>M. Eng.<br>M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Wilding, David. "Linear algebra over semirings." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/linear-algebra-over-semirings(1dfe7143-9341-4dd1-a0d1-ab976628442d).html.

Testo completo
Abstract (sommario):
Motivated by results of linear algebra over fields, rings and tropical semirings, we present a systematic way to understand the behaviour of matrices with entries in an arbitrary semiring. We focus on three closely related problems concerning the row and column spaces of matrices. This allows us to isolate and extract common properties that hold for different reasons over different semirings, yet also lets us identify which features of linear algebra are specific to particular types of semiring. For instance, the row and column spaces of a matrix over a field are isomorphic to each others' duals, as well as to each other, but over a tropical semiring only the first of these properties holds in general (this in itself is a surprising fact). Instead of being isomorphic, the row space and column space of a tropical matrix are anti-isomorphic in a certain order-theoretic and algebraic sense. The first problem is to describe the kernels of the row and column spaces of a given matrix. These equivalence relations generalise the orthogonal complement of a set of vectors, and the nature of their equivalence classes is entirely dependent upon the kind of semiring in question. The second, Hahn-Banach type, problem is to decide which linear functionals on row and column spaces of matrices have a linear extension. If they all do, the underlying semiring is called exact, and in this case the row and column spaces of any matrix are isomorphic to each others' duals. The final problem is to explain the connection between the row space and column space of each matrix. Our notion of a conjugation on a semiring accounts for the different possibilities in a unified manner, as it guarantees the existence of bijections between row and column spaces and lets us focus on the peculiarities of those bijections. Our main original contribution is the systematic approach described above, but along the way we establish several new results about exactness of semirings. We give sufficient conditions for a subsemiring of an exact semiring to inherit exactness, and we apply these conditions to show that exactness transfers to finite group semirings. We also show that every Boolean ring is exact. This result is interesting because it allows us to construct a ring which is exact (also known as FP-injective) but not self-injective. Finally, we consider exactness for residuated lattices, showing that every involutive residuated lattice is exact. We end by showing that the residuated lattice of subsets of a finite monoid is exact if and only if the monoid is a group.
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!