Articoli di riviste sul tema "Antifungal metabolites"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Antifungal metabolites".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Fernando, Krishni, Priyanka Reddy, Kathryn M. Guthridge, German C. Spangenberg, and Simone J. Rochfort. "A Metabolomic Study of Epichloë Endophytes for Screening Antifungal Metabolites." Metabolites 12, no. 1 (2022): 37. http://dx.doi.org/10.3390/metabo12010037.
Testo completoLemriss, S., F. Laurent, A. Couble, et al. "Screening of nonpolyenic antifungal metabolites produced by clinical isolates of actinomycetes." Canadian Journal of Microbiology 49, no. 11 (2003): 669–74. http://dx.doi.org/10.1139/w03-088.
Testo completoSaxena, Sanjai, Laurent Dufossé, Sunil K. Deshmukh, Hemraj Chhipa, and Manish Kumar Gupta. "Endophytic Fungi: A Treasure Trove of Antifungal Metabolites." Microorganisms 12, no. 9 (2024): 1903. http://dx.doi.org/10.3390/microorganisms12091903.
Testo completode Jesus Freitas Sá, Hilzimar, Anne Karoline Maiorana Santos, Adriano Souza Fonseca, et al. "Assessment of Metabolic Alterations Induced by Halogenated Additives and Antifungal Activity of Extracts from the Endophytic Fungus Fusarium sp. Associated with Dizygostemon riparius (Plantaginaceae)." Metabolites 15, no. 7 (2025): 451. https://doi.org/10.3390/metabo15070451.
Testo completoKokil, Sachin, and Manish Bhatia. "Antifungal Azole Metabolites: Significance in Pharmaceutical and Biomedical Analysis." Journal of Medical Biochemistry 28, no. 1 (2009): 1–10. http://dx.doi.org/10.2478/v10011-008-0040-1.
Testo completoZhao, Jing, Ju Tang, Zhandi Wang, et al. "Extraction, analysis, and antifungal activity study of algae antibiotic active substances in plateau lakes." PLOS One 20, no. 5 (2025): e0319853. https://doi.org/10.1371/journal.pone.0319853.
Testo completoSantos, Anne Karoline Maiorana, Bianca Araújo dos Santos, Josivan Regis Farias, et al. "Effect of Mn(II) and Co(II) on Anti-Candida Metabolite Production by Aspergillus sp. an Endophyte Isolated from Dizygostemon riparius (Plantaginaceae)." Pharmaceuticals 17, no. 12 (2024): 1678. https://doi.org/10.3390/ph17121678.
Testo completoVargas Hoyos, Harold Alexander, Cristian David Grisales Vargas, Daniel Osorio Giraldo, María Alejandra Villamizar Monsalve, Juan Camilo Arboleda Rivera, and Ana María Mesa Vanegas. "Actinobacteria: Source of antifungal secondary metabolites for agricultural sustainability." Scientia Agropecuaria 16, no. 2 (2025): 307–26. https://doi.org/10.17268/sci.agropecu.2025.023.
Testo completoXiong, Zirui Ray, Mario Cobo, Randy M. Whittal, Abigail B. Snyder, and Randy W. Worobo. "Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey." PLOS ONE 17, no. 4 (2022): e0266470. http://dx.doi.org/10.1371/journal.pone.0266470.
Testo completoWhyte, Authrine C., Katherine B. Gloer, James B. Gloer, Brenda Koster, and David Malloch. "New antifungal metabolites from the coprophilous fungus Cercophorasordarioides." Canadian Journal of Chemistry 75, no. 6 (1997): 768–72. http://dx.doi.org/10.1139/v97-093.
Testo completoLi, Hong-yu, Shigeki Matsunaga, and Nobuhiro Fusetani. "Antifungal Metabolites from Marine Sponges." Current Organic Chemistry 2, no. 6 (1998): 649–82. http://dx.doi.org/10.2174/1385272802666220130083412.
Testo completoGhisalberti, Emilio L., and Catherine Y. Rowland. "Antifungal Metabolites from Trichoderma harzianum." Journal of Natural Products 56, no. 10 (1993): 1799–804. http://dx.doi.org/10.1021/np50100a020.
Testo completoRagasa, Consolacion Y., Angel Lyn Kristin C. Co, and John A. Rideout. "Antifungal metabolites from Blumea balsamifera." Natural Product Research 19, no. 3 (2005): 231–37. http://dx.doi.org/10.1080/14786410410001709773.
Testo completoPacciaroni, Adriana del V., María de los Angeles Gette, Marcos Derita, et al. "Antifungal activity ofHeterothalamus alienus metabolites." Phytotherapy Research 22, no. 4 (2008): 524–28. http://dx.doi.org/10.1002/ptr.2380.
Testo completoJonathan, SG, Jonathan, SG, Omeonu FC Omeonu FC, Oshewolo O. Oshewolo O, et al. "Antifungal Activity of Secondary Metabolites from Lantana Camara L. against Bio-Deteriorating Fungi of Oryza Sativa L. (Nigerian Local Rice)." International Journal of Research and Innovation in Applied Science X, no. IV (2025): 453–69. https://doi.org/10.51584/ijrias.2025.10040038.
Testo completoBroberg, Anders, Karin Jacobsson, Katrin Ström, and Johan Schnürer. "Metabolite Profiles of Lactic Acid Bacteria in Grass Silage." Applied and Environmental Microbiology 73, no. 17 (2007): 5547–52. http://dx.doi.org/10.1128/aem.02939-06.
Testo completoWidiantini, Fitri, Mia Rahmah Qadryani, Fuji Hartati, and Endah Yulia. "Antifungal Potency of Secondary Metabolites Produced by Endophytic Bacteria against Pathogenic Fungi Pyricularia oryzae Cav." Jurnal Perlindungan Tanaman Indonesia 23, no. 2 (2019): 185. http://dx.doi.org/10.22146/jpti.48392.
Testo completoKusumawati, Anggun Hari, Siti Kholillah, Farhamzah Mr., et al. "ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES OF Impatiens balsamina (L.): LITERATURE REVIEW ARTICLE." Bacterial Empire 5, no. 2 (2022): e334. http://dx.doi.org/10.36547/be.334.
Testo completoWang, Weichen, Jin Zhao, and Zhizi Zhang. "Bacillus Metabolites: Compounds, Identification and Anti-Candida albicans Mechanisms." Microbiology Research 13, no. 4 (2022): 972–84. http://dx.doi.org/10.3390/microbiolres13040070.
Testo completoHang, Sijin, Hui Lu, and Yuanying Jiang. "Marine-Derived Metabolites Act as Promising Antifungal Agents." Marine Drugs 22, no. 4 (2024): 180. http://dx.doi.org/10.3390/md22040180.
Testo completoColeman, Jeffrey J., Suman Ghosh, Ikechukwu Okoli, and Eleftherios Mylonakis. "Antifungal Activity of Microbial Secondary Metabolites." PLoS ONE 6, no. 9 (2011): e25321. http://dx.doi.org/10.1371/journal.pone.0025321.
Testo completoKoval, Daniel, Milada Plocková, Jan Kyselka, Pavel Skřivan, Marcela Sluková, and Šárka Horáčková. "Buckwheat Secondary Metabolites: Potential Antifungal Agents." Journal of Agricultural and Food Chemistry 68, no. 42 (2020): 11631–43. http://dx.doi.org/10.1021/acs.jafc.0c04538.
Testo completoTAHARA, Satoshi, Shiro NAKAHARA, John L. INGHAM, and Junya MIZUTANI. "Fungal metabolites of antifungal isoflavone wighteone." Journal of the agricultural chemical society of Japan 59, no. 10 (1985): 1039–44. http://dx.doi.org/10.1271/nogeikagaku1924.59.1039.
Testo completoLiang, Yanqiong, Weihuai Wu, Rui Li, et al. "Evaluation of Bacillus subtilis Czk1 Metabolites by LC–MS/MS and Their Antifungal Potential against Pyrrhoderma noxium Causing Brow Rot Disease." Agriculture 13, no. 7 (2023): 1396. http://dx.doi.org/10.3390/agriculture13071396.
Testo completoMohanty, Niharika, Atmaja Elina Mishra, and Nibha Gupta. "ANTIFUNGAL POTENTIAL OF EXO-METABOLITES PRODUCED BY PENICILLIUM CAPSULATUM AGAINST PHYTOPATHOGENIC FUNGI." Acta Scientifica Malaysia 8, no. 2 (2024): 89–92. https://doi.org/10.26480/asm.02.2024.89.92.
Testo completoBuatong, Jirayu, Vatcharin Rukachaisirikul, Suthinee Sangkanu, Frank Surup, and Souwalak Phongpaichit. "Antifungal Metabolites from Marine-Derived Streptomyces sp. AMA49 against Pyricularia oryzae." Journal of Pure and Applied Microbiology 13, no. 2 (2019): 653–65. http://dx.doi.org/10.22207/jpam.13.2.02.
Testo completoSiswadi, Edi, Gallyndra Fatkhu Dinata, Tri Rini Kusparwanti, Rindha Rentina Darah Pertami, Abdurrahman Salim, and Antika Wulandari. "Antifungal Activity of Secondary Metabolites From Trichoderma sp. Against Fusarium Oxysporum f.sp. Cubense." International Journal of Technology, Food and Agriculture 2, no. 2 (2025): 115–21. https://doi.org/10.25047/tefa.v2i2.5617.
Testo completoHammad, Masooma, Hazrat Ali, Noor Hassan, et al. "Food safety and biological control; genomic insights and antimicrobial potential of Bacillus velezensis FB2 against agricultural fungal pathogens." PLOS ONE 18, no. 11 (2023): e0291975. http://dx.doi.org/10.1371/journal.pone.0291975.
Testo completoDALIE, D. K. D., A. M. DESCHAMPS, V. ATANASOVA-PENICHON, and F. RICHARD-FORGET. "Potential of Pediococcus pentosaceus (L006) Isolated from Maize Leaf To Suppress Fumonisin-Producing Fungal Growth." Journal of Food Protection 73, no. 6 (2010): 1129–37. http://dx.doi.org/10.4315/0362-028x-73.6.1129.
Testo completoSidorova, T. M., A. M. Asaturova, and V. V. Allakhverdyan. "Chromatographic profiles of antifungal exo- and endometabolites of Bacillus velezensis." TAURIDA HERALD OF THE AGRARIAN SCIENCES 2(26) (August 3, 2021): 191–99. http://dx.doi.org/10.33952/2542-0720-2021-2-26-191-199.
Testo completoKarimi, Ali, Torsten Meiners, and Christoph Böttcher. "Metabolite Profiling and Bioassay-Guided Fractionation of Zataria multiflora Boiss. Hydroethanolic Leaf Extracts for Identification of Broad-Spectrum Pre and Postharvest Antifungal Agents." Molecules 27, no. 24 (2022): 8903. http://dx.doi.org/10.3390/molecules27248903.
Testo completoGiordano, Ana Luisa Perini Leme, Marili Villa Nova Rodrigues, Karen Gabriela Araujo dos Santos, et al. "Enhancing Antifungal Drug Discovery Through Co-Culture with Antarctic Streptomyces albidoflavus Strain CBMAI 1855." International Journal of Molecular Sciences 25, no. 23 (2024): 12744. http://dx.doi.org/10.3390/ijms252312744.
Testo completoFarooq, Afgan, Iqbal Choudhary, Atta-ur Rahman, Satoshi Tahara, K. Hüsnü Can Başer, and Fatih Demirci. "Detoxification of Terpinolene by Plant Pathogenic Fungus Botrytis cinerea." Zeitschrift für Naturforschung C 57, no. 9-10 (2002): 863–66. http://dx.doi.org/10.1515/znc-2002-9-1018.
Testo completoMitrović, I., J. Grahovac, J. Dodić, A. Jokić, Z. Rončević, and M. Grahovac. "Production of plant protection agents in medium containing waste glycerol by Streptomyces hygroscopicus: Bioprocess analysis." Acta Alimentaria 49, no. 3 (2020): 270–77. http://dx.doi.org/10.1556/066.2020.49.3.5.
Testo completoHenkels, Marcella D., Teresa A. Kidarsa, Brenda T. Shaffer, et al. "Pseudomonas protegens Pf-5 Causes Discoloration and Pitting of Mushroom Caps Due to the Production of Antifungal Metabolites." Molecular Plant-Microbe Interactions® 27, no. 7 (2014): 733–46. http://dx.doi.org/10.1094/mpmi-10-13-0311-r.
Testo completoSriwastava, Akanksha Raj, and Vivek Srivastava. "GC-MS Profiling and Antifungal Activity of Secondary Metabolite from Endophytic Fungus of Giloy." Biosciences Biotechnology Research Asia 18, no. 4 (2021): 651–59. http://dx.doi.org/10.13005/bbra/2948.
Testo completoLumban Gaol, Josua Gabriel, Delianis Pringgenies, and Wilis Ari Setyati. "Screening for Antibacterial and Antifungal Activity in Fungi Associated with Molluscs." Jurnal Moluska Indonesia 9, no. 1 (2025): 1–7. https://doi.org/10.54115/jmi.v9i1.114.
Testo completoTambunan, Venita Octavia, Meiskha Bahar, Andri Pramono, Cut Fauziah, Hany Yusmaini, and Fajriati Zulfa. "Potensi Daya Hambat Filtrat Zat Metabolit Actinomycetes dari Kebun Raya Bogor terhadap Pertumbuhan Candida albicans dan Malassezia furfur." Bioscientist : Jurnal Ilmiah Biologi 10, no. 1 (2022): 66. http://dx.doi.org/10.33394/bioscientist.v10i1.4792.
Testo completoSilva, Eliane O., Antonio Ruano-González, Raquel A. Dos Santos, et al. "Antifungal and Cytotoxic Assessment of Lapachol Derivatives Produced by Fungal Biotransformation." Natural Product Communications 11, no. 1 (2016): 1934578X1601100. http://dx.doi.org/10.1177/1934578x1601100128.
Testo completoKarličić, Vera, Jelena Jovičić-Petrović, Igor Kljujev, et al. "Biocontrol potential of Bacillus amyloliquefaciens D5 ARV metabolites." Acta agriculturae Serbica 29, no. 57 (2024): 27–33. http://dx.doi.org/10.5937/aaser2357027k.
Testo completoDubey, Olga, Sylvain Dubey, Sylvain Schnee, et al. "Plant surface metabolites as potent antifungal agents." Plant Physiology and Biochemistry 150 (May 2020): 39–48. http://dx.doi.org/10.1016/j.plaphy.2020.02.026.
Testo completoYou, Fei, Ting Han, Jing-zhong Wu, Bao-kang Huang, and Lu-ping Qin. "Antifungal secondary metabolites from endophytic Verticillium sp." Biochemical Systematics and Ecology 37, no. 3 (2009): 162–65. http://dx.doi.org/10.1016/j.bse.2009.03.008.
Testo completodo Amaral, Samuel Cavalcante, Luciana Pereira Xavier, Vítor Vasconcelos, and Agenor Valadares Santos. "Cyanobacteria: A Promising Source of Antifungal Metabolites." Marine Drugs 21, no. 6 (2023): 359. http://dx.doi.org/10.3390/md21060359.
Testo completoPeng, Qian, Jing Yang, Qiang Wang, Huayi Suo, Ahmed Mahmoud Hamdy, and Jiajia Song. "Antifungal Effect of Metabolites from a New Strain Lactiplantibacillus Plantarum LPP703 Isolated from Naturally Fermented Yak Yogurt." Foods 12, no. 1 (2023): 181. http://dx.doi.org/10.3390/foods12010181.
Testo completoKarioti, Anastasia, Helen Skaltsa, Diamanto Lazari, Marina Sokovic, Begoña Garcia, and Catherine Harvala. "Secondary Metabolites from Centaurea deusta with Antimicrobial Activity." Zeitschrift für Naturforschung C 57, no. 1-2 (2002): 75–80. http://dx.doi.org/10.1515/znc-2002-1-213.
Testo completoAmalia, Anisa Rizki, Arika Purnawati, Endang Triwahyu Prasetyawati, and Vika Yanti. "Secondary Metabolites of Trichoderma sp. as Antifungal Against Rice Seed-borne Pathogen Fungi." JURNAL PEMBELAJARAN DAN BIOLOGI NUKLEUS 9, no. 3 (2023): 483–95. http://dx.doi.org/10.36987/jpbn.v9i3.4822.
Testo completoZolotykh, Denis Sergeyevich, Dmitriy Igorevich Pozdniakov, Margarita Petrovna Glushko, and Жанна Владимировна Daironas. "CHEMICAL COMPOSITION AND BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM IMPATIENS BALSAMINA." chemistry of plant raw material, no. 3 (September 26, 2022): 27–47. http://dx.doi.org/10.14258/jcprm.20220310518.
Testo completoJovicic-Petrovic, Jelena, Sanja Jeremic, Ivan Vuckovic, et al. "Aspergillus piperis A/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen Pythium aphanidermatum." Archives of Biological Sciences 68, no. 2 (2016): 279–89. http://dx.doi.org/10.2298/abs150602016j.
Testo completoAlfizar, Alfizar, Amda Resdiar, Nana Ariska, et al. "EFFICACY ANTIMICROBIAL ENDOPHYTICS METABOLITES TO CONTROL SIGATOKA DISEASE (MYCOSPHAERELLA MUSICOLA) ON BANANAS IN NORTHERN SUMATERA." International Journal of Applied Science and Engineering Review 05, no. 03 (2024): 58–75. http://dx.doi.org/10.52267/ijaser.2024.5309.
Testo completoKgosiemang, Julius Leumo, Tshimangadzo Ramakuwela, Sandiswa Figlan, and Nicolene Cochrane. "Antifungal Effect of Metabolites from Bacterial Symbionts of Entomopathogenic Nematodes on Fusarium Head Blight of Wheat." Journal of Fungi 10, no. 2 (2024): 148. http://dx.doi.org/10.3390/jof10020148.
Testo completo