Letteratura scientifica selezionata sul tema "Application to image restoration"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Application to image restoration".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Application to image restoration"
Ishii, Shin, Sehyung Lee, Hidetoshi Urakubo, Hideaki Kume e Haruo Kasai. "Generative and discriminative model-based approaches to microscopic image restoration and segmentation". Microscopy 69, n. 2 (26 marzo 2020): 79–91. http://dx.doi.org/10.1093/jmicro/dfaa007.
Testo completoTang, Yi, Jin Qiu e Ming Gao. "Fuzzy Medical Computer Vision Image Restoration and Visual Application". Computational and Mathematical Methods in Medicine 2022 (21 giugno 2022): 1–10. http://dx.doi.org/10.1155/2022/6454550.
Testo completoZhang, Yang, Hangyu Xie, Shikai Zhuang e Xiaoan Zhan. "Image Processing and Optimization Using Deep Learning-Based Generative Adversarial Networks (GANs)". Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 5, n. 1 (11 giugno 2024): 50–62. http://dx.doi.org/10.60087/jaigs.v5i1.163.
Testo completoLiu, Zihan. "Literature Review on Image Restoration". Journal of Physics: Conference Series 2386, n. 1 (1 dicembre 2022): 012041. http://dx.doi.org/10.1088/1742-6596/2386/1/012041.
Testo completoYuan, Yuan, Yao Hua Yi e Min Jing Miao. "An Automatic Calculation Method of MTF and the Application in Blurred Images Restoration". Applied Mechanics and Materials 731 (gennaio 2015): 141–46. http://dx.doi.org/10.4028/www.scientific.net/amm.731.141.
Testo completoLi, Yiyang. "Digital signal processing techniques for image enhancement and restoration". Applied and Computational Engineering 17, n. 1 (23 ottobre 2023): 198–205. http://dx.doi.org/10.54254/2755-2721/17/20230940.
Testo completoHafiz Muhammad Tayyab Khushi. "Impulse Noise Removal Using Soft-computing". Lahore Garrison University Research Journal of Computer Science and Information Technology 6, n. 1 (30 marzo 2022): 32–48. http://dx.doi.org/10.54692/lgurjcsit.2022.0601275.
Testo completoKashyap, R. L., e K. B. Eom. "Robust image modeling techniques with an image restoration application". IEEE Transactions on Acoustics, Speech, and Signal Processing 36, n. 8 (1988): 1313–25. http://dx.doi.org/10.1109/29.1659.
Testo completoHu, Yang Bo, Hua Jiang e Long Bing Li. "The Research of Application in Image Restoration Based on Wiener Filtering". Applied Mechanics and Materials 278-280 (gennaio 2013): 1232–36. http://dx.doi.org/10.4028/www.scientific.net/amm.278-280.1232.
Testo completoTao, Yu, e Jan-Peter Muller. "Super-Resolution Restoration of MISR Images Using the UCL MAGiGAN System". Remote Sensing 11, n. 1 (29 dicembre 2018): 52. http://dx.doi.org/10.3390/rs11010052.
Testo completoTesi sul tema "Application to image restoration"
Boukouvala, Erisso. "Image restoration techniques and application on astronomical images". Thesis, University of Reading, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414571.
Testo completoQiu, Zhen. "Feature-preserving image restoration and its application in biological fluorescence microscopy". Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2682.
Testo completoAbboud, Feriel. "Restoration super-resolution of image sequences : application to TV archive documents". Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1038/document.
Testo completoThe last century has witnessed an explosion in the amount of video data stored with holders such as the National Audiovisual Institute whose mission is to preserve and promote the content of French broadcast programs. The cultural impact of these records, their value is increased due to commercial reexploitation through recent visual media. However, the perceived quality of the old data fails to satisfy the current public demand. The purpose of this thesis is to propose new methods for restoring video sequences supplied from television archive documents, using modern optimization techniques with proven convergence properties. In a large number of restoration issues, the underlying optimization problem is made up with several functions which might be convex and non-necessarily smooth. In such instance, the proximity operator, a fundamental concept in convex analysis, appears as the most appropriate tool. These functions may also involve arbitrary linear operators that need to be inverted in a number of optimization algorithms. In this spirit, we developed a new primal-dual algorithm for computing non-explicit proximity operators based on forward-backward iterations. The proposed algorithm is accelerated thanks to the introduction of a preconditioning strategy and a block-coordinate approach in which at each iteration, only a "block" of data is selected and processed according to a quasi-cyclic rule. This approach is well suited to large-scale problems since it reduces the memory requirements and accelerates the convergence speed, as illustrated by some experiments in deconvolution and deinterlacing of video sequences. Afterwards, a close attention is paid to the study of distributed algorithms on both theoretical and practical viewpoints. We proposed an asynchronous extension of the dual forward-backward algorithm, that can be efficiently implemented on a multi-cores architecture. In our distributed scheme, the primal and dual variables are considered as private and spread over multiple computing units, that operate independently one from another. Nevertheless, communication between these units following a predefined strategy is required in order to ensure the convergence toward a consensus solution. We also address in this thesis the problem of blind video deconvolution that consists in inferring from an input degraded video sequence, both the blur filter and a sharp video sequence. Hence, a solution can be reached by resorting to nonconvex optimization methods that estimate alternatively the unknown video and the unknown kernel. In this context, we proposed a new blind deconvolution method that allows us to implement numerous convex and nonconvex regularization strategies, which are widely employed in signal and image processing
Al-Suwailem, Umar A. "Continuous spatial domain image identification and restoration with multichannel applications /". free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9737865.
Testo completoAuyeung, Cheung. "Optimal constraint-based signal restoration and its applications". Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/15785.
Testo completoEastlick, Anne C. "Genre criticism : an application of BP's image restoration campaign to the crisis communication genre". Scholarly Commons, 2011. https://scholarlycommons.pacific.edu/uop_etds/767.
Testo completoWen, Youwei. "Fast solvers for Toeplitz systems with applications to image restoration". Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B3688280X.
Testo completoWen, Youwei, e 文有為. "Fast solvers for Toeplitz systems with applications to image restoration". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B3688280X.
Testo completoSaeed, Mohammed. "Maximum likelihood parameter estimation of mixture models and its application to image segmentation and restoration". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43410.
Testo completoGibbs, Alison L. "Convergence of Markov chain Monte Carlo algorithms with applications to image restoration". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ50003.pdf.
Testo completoLibri sul tema "Application to image restoration"
Zelensky, Alexander A., 1943- author e Kravchenko, Viktor F., 1939- author, a cura di. Bispectral methods of signal processing: Applications in radar, telecommunications and digital image restoration. Berlin: Walter de Gruyter GmbH & Co. KG, 2015.
Cerca il testo completoFavaro, Paolo. 3-D shape estimation and image restoration: Exploiting defocus and motion blur. London: Springer, 2007.
Cerca il testo completoLesk, Michael. Image formats for preservation and access: A report. Washington, D.C: Commission on Preservation and Access, 1990.
Cerca il testo completoDobreva, Milena P. Applications of computer tools in studying medieval Slavonic manuscripts. Sofia, Bulgaria: Boyko Kacharmazov, 1995.
Cerca il testo completoKatsaggelos, Aggelos K., a cura di. Digital Image Restoration. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-58216-5.
Testo completo1956-, Katsaggelos Aggelos Konstantinos, a cura di. Digital image restoration. Berlin: Springer-Verlag, 1991.
Cerca il testo completoJ, McDonnell M., a cura di. Image restoration and reconstruction. Oxford [Oxfordshire]: Clarendon Press, 1986.
Cerca il testo completoHunter, Michael. The Image of Restoration Science. London ; New York : Routledge, 2017.: Routledge, 2016. http://dx.doi.org/10.4324/9781315556857.
Testo completoOlson, Rex. Professional Photoshop: Image restoration & repair. Burbank, Calif: Desktop Images, 2002.
Cerca il testo completoRütimann, Hans. Computerization project of the Archivo General de Indias, Seville, Spain: A report to the Commission on Preservation and Access. Washington, D.C: Commission on Preservation and Access, 1992.
Cerca il testo completoCapitoli di libri sul tema "Application to image restoration"
Moura Neto, Francisco Duarte, e Antônio José da Silva Neto. "Image Restoration". In An Introduction to Inverse Problems with Applications, 85–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32557-1_5.
Testo completoAverbuch, Amir Z., Pekka Neittaanmaki e Valery A. Zheludev. "Application of Periodic Frames to Image Restoration". In Spline and Spline Wavelet Methods with Applications to Signal and Image Processing, 465–78. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8926-4_18.
Testo completoHu, Wenjin, Fuliang Zen, Jiahao Meng e Yuqi Ye. "Digital Restoration for Damaged Thangka Image". In Application of Intelligent Systems in Multi-modal Information Analytics, 857–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15740-1_112.
Testo completoGhennam, Souheila, e Khier Benmahammed. "Image Restoration Using Neural Networks". In Bio-Inspired Applications of Connectionism, 227–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45723-2_27.
Testo completoGonzález-Jaime, Luis, Mike Nachtegeal, Etienne Kerre, Gonzalo Vegas-Sánchez-Ferrero e Santiago Aja-Fernández. "Parametric Image Restoration Using Consensus: An Application to Nonstationary Noise Filtering". In Pattern Recognition and Image Analysis, 358–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38628-2_42.
Testo completoHe, Chuan, e Changhua Hu. "Parallel Primal-dual Method with Application to Image Restoration". In Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems, 141–88. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3750-9_6.
Testo completoDiffellah, Nacira, Rabah Hamdini e Tewfik Bekkouche. "Image Restoration Using Proximal-Splitting Methods". In Artificial Intelligence and Its Applications, 437–46. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96311-8_40.
Testo completoRooms, Filip, Bart Goossens, Aleksandra Pižurica e Wilfried Philips. "Image Restoration and Applications in Biomedical Processing". In Optical and Digital Image Processing, 571–91. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635245.ch26.
Testo completoHe, Chuan, e Changhua Hu. "Fast Parameter Estimation in TV-Based Image Restoration". In Parallel Operator Splitting Algorithms with Application to Imaging Inverse Problems, 73–105. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3750-9_4.
Testo completoSarrafzadeh, M., A. K. Katsaggelos e S. P. R. Kumar. "Parallel Architectures For Iterative Image Restoration". In Parallel Algorithms and Architectures for DSP Applications, 1–31. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3996-4_1.
Testo completoAtti di convegni sul tema "Application to image restoration"
Yang, Lei, Jingyi Liu, Ze Shi e Caijuan Shi. "SCMamba: A Space Correction State Space Model for Image Restoration". In 2024 7th International Conference on Computer Information Science and Application Technology (CISAT), 436–40. IEEE, 2024. http://dx.doi.org/10.1109/cisat62382.2024.10695207.
Testo completoCheng, B. T., M. A. Fiddy, J. D. Newman, R. C. Van Vranken e D. L. Clark. "Image restoration from low light level degraded data". In Quantum-Limited Imaging and Image Processing. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/qlip.1989.tuc4.
Testo completoWang, Fu, e Lin Deng. "The Application of Image Restoration in Aviation Image". In 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/iccmcee-15.2015.157.
Testo completoSezan, M. Ibrahim. "Method of convex projections for image enhancement and restoration". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mf1.
Testo completoOkitsu, Nagayuki, e Masato Shirai. "Spatial Attention for Image Restoration". In International Conference on Industrial Application Engineering 2024. The Institute of Industrial Applications Engineers, 2024. http://dx.doi.org/10.12792/iciae2024.042.
Testo completoLambert, Andrew J., James Webb e Donald Fraser. "Fast intelligent image sensor with application to image restoration". In International Symposium on Optical Science and Technology, a cura di C. Bruce Johnson, Divyendu Sinha e Phillip A. Laplante. SPIE, 2003. http://dx.doi.org/10.1117/12.452134.
Testo completoLakshmi, A., e Subrata Rakshit. "Gaussian Restoration pyramid : Application of image restoration to Laplacian pyramid compression". In 2010 IEEE 2nd International Advance Computing Conference (IACC 2010). IEEE, 2010. http://dx.doi.org/10.1109/iadcc.2010.5423035.
Testo completoYu Hua, Wu Wen-Quan e Liu Zhong. "Application of Toeplitz matrix in image restoration". In 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE, 2010. http://dx.doi.org/10.1109/bicta.2010.5645155.
Testo completoPandey, Mukesh, Gunjan Rawat e Puneet Kanti. "Image Restoration Application and Methods for Different Images: A Review". In 2022 International Conference on Advances in Computing, Communication and Materials (ICACCM). IEEE, 2022. http://dx.doi.org/10.1109/icaccm56405.2022.10009397.
Testo completoHong Sun, H. Maitre e Bao Guan. "Turbo image restoration". In Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/isspa.2003.1224729.
Testo completoRapporti di organizzazioni sul tema "Application to image restoration"
Carasso, Alfred S., e András E. Vladár. Calibrating image roughness by estimating Lipschitz exponents, with application to image restoration. Gaithersburg, MD: National Institute of Standards and Technology, 2007. http://dx.doi.org/10.6028/nist.ir.7438.
Testo completoLal, Anisha M., Ali A. Abdulla e Aju Dennisan. Remote Sensing Image Restoration for Environmental Applications Using Estimated Parameters. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, agosto 2018. http://dx.doi.org/10.7546/crabs.2018.08.11.
Testo completoLasko, Kristofer, e Sean Griffin. Monitoring Ecological Restoration with Imagery Tools (MERIT) : Python-based decision support tools integrated into ArcGIS for satellite and UAS image processing, analysis, and classification. Engineer Research and Development Center (U.S.), aprile 2021. http://dx.doi.org/10.21079/11681/40262.
Testo completoJennison, Christopher, e Michael Jubb. Statistical Image Restoration and Refinement. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1986. http://dx.doi.org/10.21236/ada196142.
Testo completoMurphy, P. K. Survey of Image Restoration Techniques. Fort Belvoir, VA: Defense Technical Information Center, luglio 1988. http://dx.doi.org/10.21236/ada197470.
Testo completoChan, Tony F., e Jianhong Shen. A Good Image Model Eases Restoration. Fort Belvoir, VA: Defense Technical Information Center, febbraio 2002. http://dx.doi.org/10.21236/ada437474.
Testo completoGoda, Matthew E. Wavelet Domain Image Restoration and Super-Resolution. Fort Belvoir, VA: Defense Technical Information Center, agosto 2002. http://dx.doi.org/10.21236/ada405111.
Testo completoMairal, Julien, Michael Elad e Guillermo Sapiro. Sparse Representation for Color Image Restoration (PREPRINT). Fort Belvoir, VA: Defense Technical Information Center, ottobre 2006. http://dx.doi.org/10.21236/ada478437.
Testo completoJefferies, Stuart M., Douglas A. Hope e C. A. Giebink. Next Generation Image Restoration for Space Situational Awareness. Fort Belvoir, VA: Defense Technical Information Center, marzo 2009. http://dx.doi.org/10.21236/ada495284.
Testo completoBarbacci, Mario R., e Dennis L. Doubleday. Generalized Image Library: A Durra Application Example. Fort Belvoir, VA: Defense Technical Information Center, luglio 1988. http://dx.doi.org/10.21236/ada199481.
Testo completo