Letteratura scientifica selezionata sul tema "Atmospheric methane"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Atmospheric methane".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Atmospheric methane"

1

Arora, Vivek K., Joe R. Melton, and David Plummer. "An assessment of natural methane fluxes simulated by the CLASS-CTEM model." Biogeosciences 15, no. 15 (2018): 4683–709. http://dx.doi.org/10.5194/bg-15-4683-2018.

Testo completo
Abstract (sommario):
Abstract. Natural methane emissions from wetlands and fire, and soil uptake of methane, simulated using the Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem (CLASS-CTEM) modelling framework, over the historical 1850–2008 period, are assessed by using a one-box model of atmospheric methane burden. This one-box model also requires anthropogenic emissions and the methane sink in the atmosphere to simulate the historical evolution of global methane burden. For this purpose, global anthropogenic methane emissions for the period 1850–2008 were reconstructed based on the harmonized rep
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Jensen, Sigmund, Anders Priemé, and Lars Bakken. "Methanol Improves Methane Uptake in Starved Methanotrophic Microorganisms." Applied and Environmental Microbiology 64, no. 3 (1998): 1143–46. http://dx.doi.org/10.1128/aem.64.3.1143-1146.1998.

Testo completo
Abstract (sommario):
ABSTRACT Methanotrophs in enrichment cultures grew and sustained atmospheric methane oxidation when supplied with methanol. If they were not supplied with methanol or formate, their atmospheric methane oxidation came to a halt, but it was restored within hours in response to methanol or formate. Indigenous forest soil methanotrophs were also dependent on a supply of methanol upon reduced methane access but only when exposed to a methane-free atmosphere. Their immediate response to each methanol addition, however, was to shut down the oxidation of atmospheric methane and to reactivate atmospher
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Stevens, C. M. "Atmospheric methane." Chemical Geology 71, no. 1-3 (1988): 11–21. http://dx.doi.org/10.1016/0009-2541(88)90102-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Gorham, Katrine A., Sam Abernethy, Tyler R. Jones, et al. "Opinion: A research roadmap for exploring atmospheric methane removal via iron salt aerosol." Atmospheric Chemistry and Physics 24, no. 9 (2024): 5659–70. http://dx.doi.org/10.5194/acp-24-5659-2024.

Testo completo
Abstract (sommario):
Abstract. The escalating climate crisis requires rapid action to reduce the concentrations of atmospheric greenhouse gases and lower global surface temperatures. Methane will play a critical role in near-term warming due to its high radiative forcing and short atmospheric lifetime. Methane emissions have accelerated in recent years, and there is significant risk and uncertainty associated with the future growth in natural emissions. The largest natural sink of methane occurs through oxidation reactions with atmospheric hydroxyl and chlorine radicals. Enhanced atmospheric oxidation could be a p
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Catling, D. C., M. W. Claire, and K. J. Zahnle. "Anaerobic methanotrophy and the rise of atmospheric oxygen." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, no. 1856 (2007): 1867–88. http://dx.doi.org/10.1098/rsta.2007.2047.

Testo completo
Abstract (sommario):
In modern marine sediments, the anoxic decomposition of organic matter generates a significant flux of methane that is oxidized microbially with sulphate under the seafloor and never reaches the atmosphere. In contrast, prior to ca 2.4 Gyr ago, the ocean had little sulphate to support anaerobic oxidation of methane (AOM) and the ocean should have been an important methane source. As atmospheric O 2 and seawater sulphate levels rose on the early Earth, AOM would have increasingly throttled the release of methane. We use a biogeochemical model to simulate the response of early atmospheric O 2 an
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Buzan, E. M., C. A. Beale, C. D. Boone, and P. F. Bernath. "Global stratospheric measurements of the isotopologues of methane from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer." Atmospheric Measurement Techniques Discussions 8, no. 10 (2015): 11171–207. http://dx.doi.org/10.5194/amtd-8-11171-2015.

Testo completo
Abstract (sommario):
Abstract. This paper presents an analysis of observations of methane and its two major isotopologues, CH3D and 13CH4 from the Atmospheric Chemistry Experiment (ACE) satellite between 2004 and 2013. Additionally, atmospheric methane chemistry is modeled using the Whole Atmospheric Community Climate Model (WACCM). ACE retrievals of methane extend from 6 km for all isotopologues to 75 km for 12CH4, 35 km for CH3D, and 50 km for 13CH4. While total methane concentrations retrieved from ACE agree well with the model, values of δD–CH4 and δ13C–CH4 show a bias toward higher δ compared to the model and
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Duda, Adam. "The Impact of Atmospheric Pressure Changes on Methane Emission from Goafs to Coal Mine Workings." Energies 17, no. 1 (2023): 173. http://dx.doi.org/10.3390/en17010173.

Testo completo
Abstract (sommario):
Increased effectiveness of methane drainage from sealed post-mining goaves in hard coal mines contributes to reduced methane emission from goaves into the mine ventilation system. This paper focuses on issues concerning the assessment of the additional amount of methane released from the goaf into mine workings during periods of atmospheric pressure drops, which can be captured with a methane drainage system. Thanks to the solutions presented in the paper, it is possible to control the efficiency of the goaf drainage system, which in turn leads to the reduction of methane emission from the min
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Wang, Jin, and Qinghua Peter He. "Methane Removal from Air: Challenges and Opportunities." Methane 2, no. 4 (2023): 404–14. http://dx.doi.org/10.3390/methane2040027.

Testo completo
Abstract (sommario):
Driven by increasing greenhouse gas (GHG) concentrations in the atmosphere, extreme weather events have become more frequent and their impacts on human lives have become more severe. Therefore, the need for short-term GHG mitigations is urgent. Recently, methane has been recognized as an important mitigation target due to its high global warming potential (GWP). However, methane’s low concentration in the atmosphere and stable molecular structure make its removal from the air highly challenging. This review first discusses the fundamental aspects of the challenges in atmospheric methane remova
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Bussmann, Ingeborg, Eric P. Achterberg, Holger Brix, et al. "Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea." Biogeosciences 21, no. 16 (2024): 3819–38. http://dx.doi.org/10.5194/bg-21-3819-2024.

Testo completo
Abstract (sommario):
Abstract. Quantification of the diffusive methane fluxes between the coastal ocean and atmosphere is important to constrain the atmospheric methane budget. The determination of the fluxes in coastal waters is characterized by a high level of uncertainty. To improve the accuracy of the estimation of coastal methane fluxes, high temporal and spatial sampling frequencies of dissolved methane in seawater are required, as well as the quantification of atmospheric methane concentrations, wind speed and wind direction above the ocean. In most cases, these atmospheric data are obtained from land-based
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Meng, L., R. Paudel, P. G. M. Hess, and N. M. Mahowald. "Seasonal and interannual variability in wetland methane emissions simulated by CLM4Me' and CAM-chem and comparisons to observations of concentrations." Biogeosciences 12, no. 13 (2015): 4029–49. http://dx.doi.org/10.5194/bg-12-4029-2015.

Testo completo
Abstract (sommario):
Abstract. Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latit
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Tesi sul tema "Atmospheric methane"

1

Tice, Dane Steven. "Ground-based near-infrared remote sounding of ice giant clouds and methane." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4f09f270-a25c-4d36-96d3-13070a594eaa.

Testo completo
Abstract (sommario):
The ice giants, Uranus and Neptune, are the two outermost planets in our solar system. With only one satellite flyby each in the late 1980’s, the ice giants are arguably the least understood of the planets orbiting the Sun. A better understanding of these planets’ atmospheres will not only help satisfy the natural scientific curiosity we have about these distant spheres of gas, but also might provide insight into the dynamics and meteorology of our own planet’s atmosphere. Two new ground-based, near-infrared datasets of the ice giants are studied. Both datasets provide data in a portion of the
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Knappett, Diane Shirley. "Observing the distribution of atmospheric methane from space." Thesis, University of Leicester, 2012. http://hdl.handle.net/2381/10928.

Testo completo
Abstract (sommario):
Methane (CH4) is a potent greenhouse gas with a radiative forcing efficiency 21 times greater than that of carbon dioxide (CO2) and an atmospheric lifetime of approximately 12 years. Although the annual global source strength of CH4 is fairly well constrained, the temporal and spatial variability of individual sources and sinks is currently less well quantified. In order to constrain CH4 emission estimates, inversion models require satellite retrievals of XCH4 with an accuracy of < 1-2%. However, satellite retrievals of XCH4 in the shortwave infrared (SWIR) are often hindered by the presence o
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Warwick, Nicola Julie. "Global modelling of atmospheric methane and methyl bromide." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619980.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Teama, Doaa Galal. "A 30-Year Record of the Isotopic Composition of Atmospheric Methane." Thesis, Portland State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3557627.

Testo completo
Abstract (sommario):
<p> Methane (CH<sub>4</sub>) is one of the most important greenhouse gases after water vapor and carbon dioxide due to its high concentration and global warming potential 25 times than that of CO<sub>2</sub>(based on a 100 year time horizon). Its atmospheric concentration has more than doubled from the preindustrial era due to anthropogenic activities such as rice cultivation, biomass burning, and fossil fuel production. However, the rate of increase of atmospheric CH<sub>4</sub> (or the growth rate) slowed from 1980 until present. The main reason for this trend is a slowdown in the trend of
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Wecht, Kevin James. "Quantifying Methane Emissions Using Satellite Observations." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11252.

Testo completo
Abstract (sommario):
Methane is the second most influential anthropogenic greenhouse gas. There are large uncertainties in the magnitudes and trends of methane emissions from different source types and source regions. Satellite observations of methane offer dense spatial coverage unachievable by suborbital observations. This thesis evaluates the capabilities of using satellite observations of atmospheric methane to provide high-resolution constraints on continental scale methane emissions. In doing so, I seek to evaluate the supporting role of suborbital observations, to inform the emission inventories on which po
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Butterworth, Anna Lucy. "Determination of the combined isotopic composition of atmospheric methane." Thesis, Open University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264463.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Butenhoff, Christopher Lee. "Investigation of the sources and sinks of atmospheric methane." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/2813.

Testo completo
Abstract (sommario):
The work presented here represents a number of independent studies that investigated various components of the CH4 budget, namely the sources and sinks. We used a chemical-tracer model and created unique long-term time series of atmospheric CH4, carbon monoxide (CO), molecular hydrogen (H2), and methylchloroform (CH3CCl3) measurements at marine background air to derive histories of atmospheric hydroxyl radical (OH) - the main chemical oxidant of CH4, biomass burning - an important source of CH4 in the tropics, and emissions of CH4 from rice paddies - one of the largest anthropogenic sources of
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Srong, E. Kimberley. "Spectral parameters of methane for remote sounding of the Jovian atmosphere." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:0f870f86-c546-461d-aca7-61f1ccc249df.

Testo completo
Abstract (sommario):
Spectroscopic measurements in the infrared have proven to be a valuable source of information about the Jovian atmosphere. However, numerous questions remain, many of which will be addressed by the Galileo μission, due to arrive at Jupiter in December, 1995. One of the instruments on Galileo is the Near-Infrared Mapping Spectrometer (NIMS), which will measure temperature structure, cheμical composition, and cloud properties. The objective of the work described in this thesis was to investigate the transmittance properties of the Jovian atmosphere and, in particular, to obtain transmittance fun
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Snover, Amy Katherine. "The stable hydrogen isotopic composition of methane emitted from biomass burning and removed by oxic soils : application to the atmospheric methane budget /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/11570.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Bräunlich, Maya. "Study of atmospheric carbon monoxide and methane Untersuchung von atmosphärischen Kohlenmonoxid und Methan anhand von Isotopenmessungen /." [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8832641.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Libri sul tema "Atmospheric methane"

1

Khalil, Mohammad Aslam Khan, ed. Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

H, Bruhl Christoph, Thompson Anne M, and United States. Environmental Protection Agency., eds. The current and future environmental role of atmospheric methane: Model studies and uncertainties. U.S. Environmental Protection Agency, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

M, Bruhl Christoph, Thompson Anne M, and United States. National Aeronautics and Space Administration., eds. The current and future environmental role of atmospheric methane: Model studies and uncertainties. National Aeronautics and Space Administration, 1993.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

M, McIntosh Catherine, and Environmental Research Laboratories (U.S.), eds. Atmospheric CH₄ seasonal cycles and latitude gradient from the NOAA CMDL cooperative air sampling network : Forecast Systems Laboratory, Boulder, Colorado, August 1996. United States Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1996.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Workshop, WMO/UNEP Intergovernmental Panel on Climate Change International IPCC. Methane and nitrous oxide: Methods in national emissions inventories and options for control : proceedings, Euroase Hotel, Amersfoort, the Netherlands, 3-5 February 1993. National Institute of Public Health and Environmental Protection, 1993.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Khalil, M. A. K., ed. Atmospheric Methane: Sources, Sinks, and Role in Global Change. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84605-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Khalil, M. A. K. 1950-, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on the Atmospheric Methane Cycle: Sources, Sinks, Distributions, and Role in Global Change (1991 : Portland, Or.), eds. Atmospheric methane: Sources, sinks, and role in global change. Springer-Verlag, 1993.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Steele, L. Paul. Atmospheric methane concentrations: The NOAA/CMDL Global Cooperative Flask Sampling Network, 1983-1988. Oak Ridge National Laboratory, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

M, Lang Patricia, and Climate Monitoring and Diagnostics Laboratory (U.S.), eds. Atmospheric methane data for 1989-1992 from the NOAA/CMDL global cooperative air sampling network. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Lang, Patricia M. Atmospheric methane data for the period 1986-1986 from the NOAA/CMDL global cooperative flask sampling network. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Climate Monitoring and Diagnostics Laboratory, 1990.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Capitoli di libri sul tema "Atmospheric methane"

1

Khalil, M. A. K. "Atmospheric Methane: An Introduction." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Shearer, M. J., and M. A. K. Khalil. "Rice Agriculture: Emissions." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Levine, Joel S., Wesley R. Cofer, and Joseph P. Pinto. "Biomass Burning." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Matthews, Elaine. "Wetlands." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Thorneloe, Susan A., Morton A. Barlaz, Rebecca Peer, L. C. Huff, Lee Davis, and Joe Mangino. "Waste Management." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_13.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kirchgessner, David A. "Fossil Fuel Industries." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Judd, A. G. "Geological Sources of Methane." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_15.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Wuebbles, Donald J., Katharine A. S. Hayhoe, and Rao Kotamarthi. "Methane in the Global Environment." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Chappellaz, J., D. Raynaud, T. Blunier, and B. Stauffer. "The Ice Core Record of Atmospheric Methane." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Stevens, C. M., and M. Wahlen. "The Isotopic Composition of Atmospheric Methane and Its Sources." In Atmospheric Methane. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04145-1_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Atmospheric methane"

1

Park, J. Y., H. Lee, J. Kim, J. Kim, Y. Lee, and S. Lee. "Methane absorption ability improvement of MOF-801 atmospheric pressure plasma treatment." In 2024 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10625888.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Kryuchkov, Alexander V., Viktor V. Filatov, Marianna P. Gerasimova, and Sergey A. Sadovnikov. "Fiber optical meter of methane in atmosphere." In XXIX International Symposium "Atmospheric and Ocean Optics, Atmospheric Physics", edited by Oleg A. Romanovskii. SPIE, 2023. http://dx.doi.org/10.1117/12.2690949.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Tsvetova, Elena A. "Modeling of hydrodynamics of water-methane heterogeneous system." In XXI International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, edited by Oleg A. Romanovskii. SPIE, 2015. http://dx.doi.org/10.1117/12.2205998.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Meng, Lichun, Andreas Fix, Lasse Høgstedt, Peter Tidemand-Lichtenberg, Christian Pedersen, and Peter John Rodrigo. "Upconversion Detector for Methane Atmospheric Sensor." In Optics and Photonics for Energy and the Environment. OSA, 2017. http://dx.doi.org/10.1364/ee.2017.ew4b.2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Jarem, John M., Joseph H. Pierluissi, and William W. Ng. "A Transmittance Model For Atmospheric Methane." In 28th Annual Technical Symposium, edited by Richard A. Mollicone and Irving J. Spiro. SPIE, 1985. http://dx.doi.org/10.1117/12.945011.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Fiedler, Michael, C. Goelz, and Ulrich Platt. "Nonresonant photoacoustic monitoring of atmospheric methane." In Environmental Sensing '92, edited by Harold I. Schiff and Ulrich Platt. SPIE, 1993. http://dx.doi.org/10.1117/12.140227.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

van Herpen, Maarten, Matthew Johnson, Berend van de Kraats, et al. "ISAMO (Iron Salt Atmospheric Methane Oxidation)." In Goldschmidt2023. European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.20643.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Tanichev, Aleksandr S. "Method for fast modeling ν2 Raman band of methane". У 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, редактори Oleg A. Romanovskii та Gennadii G. Matvienko. SPIE, 2021. http://dx.doi.org/10.1117/12.2603359.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Voitsekhovskaya, Olga, Vitaliy Loskutov, Olga V. Shefer, and Danila Kashirskii. "Transmission of radiant energy by gas-aerosol medium containing methane." In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2017. http://dx.doi.org/10.1117/12.2284933.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ageev, Boris, and Yury Ponomarev. "Estimate of methane-capacity of aerogel samples of different compositions." In XXIV International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii and Gennadii G. Matvienko. SPIE, 2018. http://dx.doi.org/10.1117/12.2503956.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Atmospheric methane"

1

Strand, Stuart, Neil Bruce, Liz Rylott, and Long Zhang. Phytoremediation of Atmospheric Methane. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada579442.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Butenhoff, Christopher. Investigation of the sources and sinks of atmospheric methane. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.2807.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Hannah Dion-Kirschner, Hannah Dion-Kirschner. Investigating sage ecosystems as hotspots for atmospheric methane removal. Experiment, 2025. https://doi.org/10.18258/75776.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Safta, Cosmin, Ray Bambha, and Hope Michelsen. Estimating Regional Methane Emissions Through Atmospheric Measurements and Inverse Modeling. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1569345.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Teama, Doaa. A 30-Year Record of the Isotopic Composition of Atmospheric Methane. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.642.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Costigan, Keeley Rochelle, and Manvendra Krishna Dubey. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1193618.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Steele, L., P. Lang, and R. Sepanski. Atmospheric methane concentrations---the NOAA/CMDL global cooperative flask sampling network, 1983--1988. Office of Scientific and Technical Information (OSTI), 1991. https://doi.org/10.2172/5480352.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Lauvaux, Thomas. TA [2] Continuous, regional methane emissions estimates in northern Pennsylvania gas fields using atmospheric inversions. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1417183.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

McFarlane, Karis J. Final Report for Wetlands as a Source of Atmospheric Methane: A Multiscale and Multidisciplinary Approach. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1333394.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Jacobson, A. R., J. B. Miller, A. Ballantyne, et al. Chapter 8: Observations of Atmospheric Carbon Dioxide and Methane. Second State of the Carbon Cycle Report. Edited by N. Cavallaro, G. Shrestha, R. Birdsey, et al. U.S. Global Change Research Program, 2018. http://dx.doi.org/10.7930/soccr2.2018.ch8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!