Letteratura scientifica selezionata sul tema "Automorphic periods"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Automorphic periods".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Automorphic periods"
Jacquet, Hervé, Erez Lapid e Jonathan Rogawski. "Periods of automorphic forms". Journal of the American Mathematical Society 12, n. 1 (1999): 173–240. http://dx.doi.org/10.1090/s0894-0347-99-00279-9.
Testo completoFrahm, Jan, e Feng Su. "Upper bounds for geodesic periods over rank one locally symmetric spaces". Forum Mathematicum 30, n. 5 (1 settembre 2018): 1065–77. http://dx.doi.org/10.1515/forum-2017-0185.
Testo completoZelditch, Steven. "geodesic periods of automorphic forms". Duke Mathematical Journal 56, n. 2 (aprile 1988): 295–344. http://dx.doi.org/10.1215/s0012-7094-88-05613-x.
Testo completoYamana, Shunsuke. "Periods of residual automorphic forms". Journal of Functional Analysis 268, n. 5 (marzo 2015): 1078–104. http://dx.doi.org/10.1016/j.jfa.2014.11.009.
Testo completoIchino, Atsushi, e Shunsuke Yamana. "Periods of automorphic forms: the case of". Compositio Mathematica 151, n. 4 (13 novembre 2014): 665–712. http://dx.doi.org/10.1112/s0010437x14007362.
Testo completoLee, Min Ho. "Mixed automorphic forms and differential equations". International Journal of Mathematics and Mathematical Sciences 13, n. 4 (1990): 661–68. http://dx.doi.org/10.1155/s0161171290000916.
Testo completoDaughton, Austin. "A Hecke correspondence theorem for automorphic integrals with infinite log-polynomial sum period functions". International Journal of Number Theory 10, n. 07 (9 settembre 2014): 1857–79. http://dx.doi.org/10.1142/s1793042114500596.
Testo completoYamana, Shunsuke. "PERIODS OF AUTOMORPHIC FORMS: THE TRILINEAR CASE". Journal of the Institute of Mathematics of Jussieu 17, n. 1 (26 ottobre 2015): 59–74. http://dx.doi.org/10.1017/s1474748015000377.
Testo completoZYDOR, Michal. "Periods of automorphic forms over reductive subgroups". Annales scientifiques de l'École Normale Supérieure 55, n. 1 (2022): 141–83. http://dx.doi.org/10.24033/asens.2493.
Testo completoSharp, Richard. "Closed Geodesics and Periods of Automorphic Forms". Advances in Mathematics 160, n. 2 (giugno 2001): 205–16. http://dx.doi.org/10.1006/aima.2001.1987.
Testo completoTesi sul tema "Automorphic periods"
Daughton, Austin James Chinault. "Hecke Correspondence for Automorphic Integrals with Infinite Log-Polynomial Periods". Diss., Temple University Libraries, 2012. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/162078.
Testo completoPh.D.
Since Hecke first proved his correspondence between Dirichlet series with functional equations and automorphic forms, there have been a great number of generalizations. Of particular interest is a generalization due to Bochner that gives a correspondence between Dirichlet series with any finite number of poles that satisfy the classical functional equation and automorphic integrals with (finite) log-polynomial sum period functions. In this dissertation, we extend Bochner's result to Dirichlet series with finitely many essential singularities. With some restrictions on the underlying group and the weight, we also prove a correspondence for Dirichlet series with infinitely many poles. For this second correspondence, we provide a technique to approximate automorphic integrals with infinite log-polynomial sum period functions by automorphic integrals with finite log-polynomial period functions.
Temple University--Theses
Menes, Thibaut. "Grandes valeurs des formes de Maass sur des quotients compacts de grassmanniennes hyperboliques dans l’aspect volume". Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131059.
Testo completoLet n > m = 1 be integers such that n + m >= 4 is even. We prove the existence, in the volume aspect, of exceptional Maass forms on compact quotients of the hyperbolic Grassmannian of signature (n,m). The method builds upon the work of Rudnick and Sarnak, extended by Donnelly and then generalized by Brumley and Marshall to higher rank. It combines a counting argument with a period relation, showingthat a certain period distinguishes theta lifts from an auxiliary group. The congruence structure is defined with respect to this period and the auxiliary group is either U(m,m) or Sp_2m(R), making (U(n,m),U(m,m)) or (O(n,m),Sp_2m(R)) a type 1 dual reductive pair. The lower bound is naturally expressed, up to a logarithmic factor, as the ratio of the volumes, with the principal congruence structure on the auxiliary group
Corbett, Andrew James. "Period integrals and L-functions in the theory of automorphic forms". Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723463.
Testo completoDimbour, William. "Solutions presque automorphes et S asymptotiquement ω– périodiques pour une classe d’équations d’évolution". Thesis, Antilles-Guyane, 2013. http://www.theses.fr/2013AGUY0599/document.
Testo completoThis thesis deals with the study of evolution equations and differential equations with piecewise constant argument. Studies of such equations were motivated by the fact that they represent a hybrid of discrete and continuous dynamical systems and combine the properties of both differential and differential-difference equations. We study the existence of almost automorphic solutions and S asymptotically omega periodic solution of evolution equations and differential equations with piecewise constant argument. The study of almost automorphic and S asymptotically omega periodic functions is motivated by the fact that these functions generalize the concept of periodic functions. Therefore, we obtain results about existence and unicity of almost automorphic and S asymptotic omega periodic solution of evolution equations. We will study this problem considering evolution equations who belong to a class of differential equation with piecewise constant argument
Boudjema, Souhila. "OSCILLATIONS DANS DES ÉQUATIONS DE LIÉNARD ET DES ÉQUATIONS D'ÉVOLUTION SEMI-LINÉAIRES". Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00903302.
Testo completoWalls, Patrick. "The Theta Correspondence and Periods of Automorphic Forms". Thesis, 2013. http://hdl.handle.net/1807/43752.
Testo completoLibri sul tema "Automorphic periods"
D, Goldfeld, a cura di. Collected works of Hervé Jacquet. Providence, R.I: American Mathematical Society, 2011.
Cerca il testo completoN'Guerekata, Gaston M. Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Boston, MA: Springer US, 2001.
Cerca il testo completo1938-, Griffiths Phillip, e Kerr Matthew D. 1975-, a cura di. Hodge theory, complex geometry, and representation theory. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2013.
Cerca il testo completoPeriods and Harmonic Analysis on Spherical Varieties. Societe Mathematique De France, 2018.
Cerca il testo completoDiagana, Toka. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, 2013.
Cerca il testo completoAlmost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, 2013.
Cerca il testo completoDiagana, Toka. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, 2015.
Cerca il testo completoDiagana, Toka. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer London, Limited, 2013.
Cerca il testo completoNekrashevych, Volodymyr. Groups and Topological Dynamics. American Mathematical Society, 2022.
Cerca il testo completoCapitoli di libri sul tema "Automorphic periods"
Dou, Ze-Li, e Qiao Zhang. "Periods of automorphic forms". In Six Short Chapters on Automorphic Forms and L-functions, 17–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28708-4_2.
Testo completoShimura, Goro. "Automorphic forms and the periods of abelian varieties". In Collected Papers, 115–46. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4612-2060-2_4.
Testo completoShimura, Goro. "The periods of certain automorphic forms of arithmetic type". In Collected Papers, 360–87. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4612-2060-2_12.
Testo completoCornelissen, Gunther, e Oliver Lorscheid. "Toroidal Automorphic Forms, Waldspurger Periods and Double Dirichlet Series". In Multiple Dirichlet Series, L-functions and Automorphic Forms, 131–46. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8334-4_6.
Testo completoDou, Ze-Li, e Qiao Zhang. "Theta lifts and periods with respect to a quadratic extension". In Six Short Chapters on Automorphic Forms and L-functions, 99–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28708-4_6.
Testo completoShimura, Goro. "On the critical values of certain Dirichlet series and the periods of automorphic forms". In Collected Papers, 848–908. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4612-2060-2_23.
Testo completoN’Guérékata, Gaston M. "Almost Automorphic Functions". In Almost Periodic and Almost Automorphic Functions in Abstract Spaces, 17–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73718-4_2.
Testo completoDiagana, Toka. "Almost Automorphic Functions". In Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, 111–40. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00849-3_4.
Testo completoGetz, Jayce R., e Heekyoung Hahn. "Distinction and Period Integrals". In An Introduction to Automorphic Representations, 371–94. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-41153-3_14.
Testo completoDiagana, Toka. "Pseudo-Almost Automorphic Functions". In Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, 167–88. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00849-3_6.
Testo completoAtti di convegni sul tema "Automorphic periods"
Li, Lan. "Existence of Almost Periodic and Almost Automorphic Solutions for Second Order Differential Equations". In 2011 Seventh International Conference on Computational Intelligence and Security (CIS). IEEE, 2011. http://dx.doi.org/10.1109/cis.2011.332.
Testo completoArneodo, A., F. Argoul e P. Richetti. "Symbolic dynamics in the Belousov-Zhabotinskii reaction: from Rössler’s intuition to experimental evidence for Shil’nikov homoclinic chaos". In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.is2.
Testo completo