Segui questo link per vedere altri tipi di pubblicazioni sul tema: Bio hydrogène.

Articoli di riviste sul tema "Bio hydrogène"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Bio hydrogène".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Jung, Yang-Sook, Sunhee Lee, Jaehyeung Park, and Eun-Joo Shin. "One-Shot Synthesis of Thermoplastic Polyurethane Based on Bio-Polyol (Polytrimethylene Ether Glycol) and Characterization of Micro-Phase Separation." Polymers 14, no. 20 (2022): 4269. http://dx.doi.org/10.3390/polym14204269.

Testo completo
Abstract (sommario):
In this study, a series of bio-based thermoplastic polyurethane (TPU) was synthesized via the solvent-free one-shot method using 100% bio-based polyether polyol, prepared from fermented corn, and 1,4-butanediol (BDO) as a chain extender. The average molecular weight, degree of phase separation, thermal and mechanical properties of the TPU-based aromatic (4,4-methylene diphenyl diisocyanate: MDI), and aliphatic (bis(4-isocyanatocyclohexyl) methane: H12MDI) isocyanates were investigated by gel permeation chromatography, Fourier transform infrared spectroscopy, atomic force microscopy, X-ray Diffraction, differential scanning calorimetry, dynamic mechanical thermal analysis, and thermogravimetric analysis. Four types of micro-phase separation forms of a hard segment (HS) and soft segment (SS) were suggested according to the [NCO]/[OH] molar ratio and isocyanate type. The results showed (a) phase-mixed disassociated structure between HS and SS, (b) hydrogen-bonded structure of phase-separated between HS and SS forming one-sided hard domains, (c) hydrogen-bonded structure of phase-mixed between HS, and SS and (d) hydrogen-bonded structure of phase-separated between HS and SS forming dispersed hard domains. These phase micro-structure models could be matched with each bio-based TPU sample. Accordingly, H-BDO-2.0, M-BDO-2.0, H-BDO-2.5, and M-BDO-3.0 could be related to the (a)—form, (b)—form, (c)—form, and (d)—form, respectively.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Sathyaprakasan, Parvathy, and Geetha Kannan. "Economics of Bio-Hydrogen Production." International Journal of Environmental Science and Development 6, no. 4 (2015): 352–56. http://dx.doi.org/10.7763/ijesd.2015.v6.617.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Abd-Elrahman, Nabil K., Nuha Al-Harbi, Yas Al-Hadeethi, et al. "Influence of Nanomaterials and Other Factors on Biohydrogen Production Rates in Microbial Electrolysis Cells—A Review." Molecules 27, no. 23 (2022): 8594. http://dx.doi.org/10.3390/molecules27238594.

Testo completo
Abstract (sommario):
Microbial Electrolysis Cells (MECs) are one of the bioreactors that have been used to produce bio-hydrogen by biological methods. The objective of this comprehensive review is to study the effects of MEC configuration (single-chamber and double-chamber), electrode materials (anode and cathode), substrates (sodium acetate, glucose, glycerol, domestic wastewater and industrial wastewater), pH, temperature, applied voltage and nanomaterials at maximum bio-hydrogen production rates (Bio-HPR). The obtained results were summarized based on the use of nanomaterials as electrodes, substrates, pH, temperature, applied voltage, Bio-HPR, columbic efficiency (CE) and cathode bio-hydrogen recovery (C Bio-HR). At the end of this review, future challenges for improving bio-hydrogen production in the MEC are also discussed.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Wu, Sheng, Haotian Zhu, Enrui Bai, Chongyang Xu, Xiaoyin Xie, and Chuanyu Sun. "Composite Modified Graphite Felt Anode for Iron–Chromium Redox Flow Battery." Inventions 9, no. 5 (2024): 98. http://dx.doi.org/10.3390/inventions9050098.

Testo completo
Abstract (sommario):
The iron–chromium redox flow battery (ICRFB) has a wide range of applications in the field of new energy storage due to its low cost and environmental protection. Graphite felt (GF) is often used as the electrode. However, the hydrophilicity and electrochemical activity of GF are poor, and its reaction reversibility to Cr3+/Cr2+ is worse than Fe2+/Fe3+, which leads to the hydrogen evolution side reaction of the negative electrode and affects the efficiency of the battery. In this study, the optimal composite modified GF (Bi-Bio-GF-O) electrode was prepared by using the optimal pomelo peel powder modified GF (Bio-GF-O) as the matrix and further introducing Bi3+. The electrochemical performance and material characterization of the modified electrode were analyzed. In addition, using Bio-GF-O as the positive electrode and Bi-Bio-GF-O as the negative electrode, the high efficiency of ICRFB is realized, and the capacity attenuation is minimal. When the current density is 100 mA·cm−2, after 100 cycles, the coulomb efficiency (CE), voltage efficiency (VE), and energy efficiency (EE) were 97.83%, 85.21%, and 83.36%, respectively. In this paper, the use of pomelo peel powder and Bi3+ composite modified GF not only promotes the electrochemical performance and reaction reversibility of the negative electrode but also improves the performance of ICRFB. Moreover, the cost of the method is controllable, and the process is simple.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Palaniswamy D, Palaniswamy D., Ramesh G. Ramesh G, Sri Pradeep M. Sri Pradeep M, and Ranjith Raja S. Ranjith Raja S. "Investigation of Bio-Wastes and Methods for the Production of Bio-Hydrogen – A Review." International Journal of Scientific Research 1, no. 5 (2012): 60–62. http://dx.doi.org/10.15373/22778179/oct2012/20.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Hendrawan and Kiyoshi Dowaki. "CO2 Emission Reduction Analysis of Bio-Hydrogen Network: An Initial Stage of Hydrogen Society." Journal of Clean Energy Technologies 3, no. 4 (2015): 296–301. http://dx.doi.org/10.7763/jocet.2015.v3.212.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Zuo, J., Y. Zuo, W. Zhang, and J. Chen. "Anaerobic bio-hydrogen production using pre-heated river sediments as seed sludge." Water Science and Technology 52, no. 10-11 (2005): 31–39. http://dx.doi.org/10.2166/wst.2005.0676.

Testo completo
Abstract (sommario):
Anaerobic bio-hydrogen production is the focus in the field of bio-energy resources. In this paper, a series of batch experiments were conducted to investigate the effects of several factors on anaerobic bio-hydrogen producing process carried out by pre-heated river sediments. The results showed that several factors such as substrate and its concentration, temperature and the initial pH value could affect the anaerobic bio-hydrogen production in different levels. At 35°C and the initial pH of 6.5, using glucose of 20,000mg COD/L as substrate, the highest hydrogen production of 323.8ml-H2/g TVS in a 100ml batch reactor was reached, the specific hydrogen production rate was 37.7ml-H2/g TVSh, and the hydrogen content was 51.2%. Thereafter using the same pre-heated river sediments as seed sludge, continuous anaerobic bio-hydrogen production was achieved successfully in a lab-scale CSTR with gas-separator. At the organic loading rate of 36kg COD/m3d, the highest hydrogen production was 6.3–6.7l-H2/l-reactord, the specific hydrogen production was 1.3–1.4mol-H2/mol-glucose, and the hydrogen content in the gas was 52.3%. The effluent of the bio-reactor contained some small molecular organics, mainly including ethanol, acetate, butyrate and their molar proportion is 1 : 1 : 0.6.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Li, Yong Feng, Jing Wei Zhang, Wei Han, Jian Yu Yang, Yong Juan Zhang, and Zhan Qing Wang. "Review on Engineering of Fermentative Bio-Hydrogen Production." Advanced Materials Research 183-185 (January 2011): 193–96. http://dx.doi.org/10.4028/www.scientific.net/amr.183-185.193.

Testo completo
Abstract (sommario):
The paper not only reviews the progress of engineering and application on bio-hydrogen production, but also discusses characteristics, advantages and disadvantages of biological hydrogen production systems. Meanwhile, it mainly analyzes anaerobic fermentative bio-hydrogen production systems’ technological schemes, design strategies, engineering control parameters, fermentation control, fuel cell, technical means to increase hydrogen evolution and its rate. Under the guidance of the theory of ethanol-type fermentation, the fermentative bio-hydrogen production systems have been established in practice.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Wang, Jingliang, Shanshan Wang, Jianwen Lu, Mingde Yang, and Yulong Wu. "Improved Bio-Oil Quality from Pyrolysis of Pine Biomass in Pressurized Hydrogen." Applied Sciences 12, no. 1 (2021): 46. http://dx.doi.org/10.3390/app12010046.

Testo completo
Abstract (sommario):
The pyrolysis of pine sawdust was carried out in a fixed bed reactor heated from 30 °C to a maximum of 700 °C in atmospheric nitrogen and pressurized hydrogen (5 MPa). The yield, elemental composition, thermal stability, and composition of the two pyrolysis bio-oils were analyzed and compared. The result shows that the oxygen content of the bio-oil (17.16%) obtained under the hydrogen atmosphere was lower while the heating value (31.40 MJ/kg) was higher than those of bio-oil produced under nitrogen atmosphere. Compounds with a boiling point of less than 200 °C account for 63.21% in the bio-oil at pressurized hydrogen atmosphere, with a proportion 14.69% higher than that of bio-oil at nitrogen atmosphere. Furthermore, the hydrogenation promoted the formation of ethyl hexadecanoate (peak area percentage 19.1%) and ethyl octadecanoate (peak area percentage 15.42%) in the bio-oil. Overall, high pressure of hydrogen improved the bio-oil quality derived from the pyrolysis of pine biomass.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Wodołażski, Artur, and Adam Smoliński. "Bio-Hydrogen Production in Packed Bed Continuous Plug Flow Reactor—CFD-Multiphase Modelling." Processes 10, no. 10 (2022): 1907. http://dx.doi.org/10.3390/pr10101907.

Testo completo
Abstract (sommario):
This research study investigates the modelling and simulation of biomass anaerobic dark fermentation in bio-hydrogen production in a continuous plug flow reactor. A CFD multiphase full transient model in long-term horizons was adopted to model dark fermentation biohydrogen production in continuous mode. Both the continuous discharge of biomass, which prevents the accumulation of solid parts, and the recirculation of the liquid phase ensure constant access to the nutrient solution. The effect of the hydraulic retention time (HRT), pH and the feed rate on the bio-hydrogen yield and production rates were examined in the simulation stage. Metabolite proportions (VFA: acetic, propionic, butyric) constitute important parameters influencing the bio-hydrogen production efficiency. The model of substrate inhibition on bio-hydrogen production from glucose by attached cells of the microorganism T. neapolitana applied to the modelling of the kinetics of bio-hydrogen production was used. The modelling and simulation of a continuous plug flow (bio)reactor in biohydrogen production is an important part of the process design, modelling and optimization of the biological H2 production pathway.
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Saad Hussain Khudair, Amal Abdul Nabi Haloob, Iman Hindi Qatia, and Ameena Ghazi Abid. "Biological treatment of organic waste polluting the environment and bio-hydrogen production." Journal of Wasit for Science and Medicine 8, no. 3 (2022): 26–30. http://dx.doi.org/10.31185/jwsm.261.

Testo completo
Abstract (sommario):
Thirty four local isolates of bio-hydrogen producing anaerobic bacteria were isolated from samples of solid waste of sewage plants from different regions using liquid and solid mineral salt medium at initial pH of 7 and incubated at 37 ºC for 72 hr. .The ability of isolates was tested to produce bio-hydrogen, using liquid production medium. Results indicate that the bio-hydrogen production in 25 isolates cannot be detected, while 9 isolates showed the ability to produce bio-hydrogen and that theAn-18 isolate showed the highest level of bio-hydrogen production(34 ppm) after 72 hr. of incubation at 37 ºC. Anaerobic isolates producing bio-hydrogen were identified based on morphological characteristics and some biochemical tests, results showed that 7isolates belong to the genus Actinomycessp.and only two isolates belong to the genus Clostridium sp., Then prepared the mixed culture from 7 isolates and subsequently was used as inoculums for hydrogen production medium. Inoculated the bioreactor containing the residues of agricultural and household by mixed culture (1 ml/ 50 ml medium) at initial pH of 7 and incubated at 37 ºC by using water bath for 20 days ,and subsequently was estimated the amount of hydrogen produced in every day. The results showed that hydrogen production was started from the second day (12 ppm) andreached its maximum production for the period from 14-17 days after the start of the experiment.
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Ahmad, Syed A. R., Mritunjai Singh, and Archana Tiwari. "Review on Bio-hydrogen Production Methods." International Journal for Research in Applied Science and Engineering Technology 10, no. 3 (2022): 610–14. http://dx.doi.org/10.22214/ijraset.2022.40679.

Testo completo
Abstract (sommario):
Abstract: Hydrogen is a promising replacement for fossil fuels as a long-term energy source. It is a clean, recyclable, high efficient nature and environmentally friendly fuel. Hydrogen is now produced mostly using water electrolysis and natural gas steam reformation. However, biological hydrogen production has substantial advantages over thermochemical and electrochemical. Hydrogen can be produced biologically by bio-photolysis (direct and indirect), photo fermentation, dark fermentation. The methods for producing biological hydrogen were studied in this study. Keywords: Biological hydrogen, steam reformation, bio-photolysis, photo-fermentation, dark fermentation
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Hemmati, Sadaf, M. Mostafa Elnegihi, Chee Hoong Lee, et al. "Synthesis of Large-Scale Bio-Hydrogen Network Using Waste Gas from Landfill and Anaerobic Digestion: A P-Graph Approach." Processes 8, no. 5 (2020): 505. http://dx.doi.org/10.3390/pr8050505.

Testo completo
Abstract (sommario):
Due to the expanding concern on cleaner production and sustainable development aspects, a technology shift is needed for the hydrogen production, which is commonly derived from natural gas. This work aims to synthesise a large-scale bio-hydrogen network in which its feedstock, i.e., bio-methane, is originated from landfill gas and palm oil mill effluent (POME). Landfill gas goes through a biogas upgrader where high-purity bio-methane is produced, while POME is converted to bio-methane using anaerobic digestor (AD). The generated bio-methane is then distributed to the corresponding hydrogen sink (e.g., oil refinery) through pipelines, and subsequently converted into hydrogen via steam methane reforming (SMR) process. In this work, P-graph framework is used to determine a supply network with minimum cost, while ensuring the hydrogen demands are satisfied. Two case studies in the West and East Coasts of Peninsular Malaysia are used to illustrate the feasibility of the proposed model. In Case Study 1, four scenarios on the West Coast have been considered, showing total cost saving ranging between 25.9% and 49.5%. This showed that aside from the positive environmental impact, the incorporation of bio-hydrogen supply can also be economically feasible. Such benefits can also be seen in Case Study 2, where the uptake of biogas from landfill and POME sources on the East Coast can lead to a 31% reduction on total network cost. In addition, the effect of bio-hydrogen supply network on carbon footprint reduction was analysed in this work.
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Fang, H. H. P., H. Liu, and T. Zhang. "Bio-hydrogen production from wastewater." Water Supply 4, no. 1 (2004): 77–85. http://dx.doi.org/10.2166/ws.2004.0009.

Testo completo
Abstract (sommario):
The technically feasibility of converting organic pollutants in wastewater into hydrogen by a continuous two-step process was demonstrated. Two carbohydrates, i.e. glucose and sucrose, in wastewater were respectively acidified by dark fermentation at pH 5.5 with 6–6.6 hours of hydraulic retention in a 3-l fermentor, producing an effluent containing mostly acetate and butyrate, and a methane-free biogas comprising mostly hydrogen. The acidified effluent was then further treated by photo fermentation for hydrogen production. The overall yield based on the substrate consumed was 31–32%, i.e. 17–18% for dark fermentation and 14% for photo fermentation. It was found that under certain dark fermentation conditions, hydrogen-producing sludge was agglutinated into granules, resulting in a higher biomass density and increased volumetric hydrogen production efficiency. DNA-based analysis of microbial communities revealed that the respective predominant bacteria were Clostridium in dark fermentation and Rhodobacter in photo fermentation. Further investigations are warranted, particularly, in areas such as improving reactor design, treating protein and lipid rich wastewaters, and studying sludge granulation mechanisms and controlling factors.
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Prestipino, Mauro, Antonio Piccolo, Maria Francesca Polito, and Antonio Galvagno. "Combined Bio-Hydrogen, Heat, and Power Production Based on Residual Biomass Gasification: Energy, Exergy, and Renewability Assessment of an Alternative Process Configuration." Energies 15, no. 15 (2022): 5524. http://dx.doi.org/10.3390/en15155524.

Testo completo
Abstract (sommario):
Bio-hydrogen from residual biomass may involve energy-intensive pre-treatments for drying and size management, as in the case of wet agro-industrial residues. This work assesses the performance of an alternative process layout for bio-hydrogen production from citrus peel gasification, with the aim of cogenerating heat and power along with hydrogen, using minimal external energy sources. The process consists of an air-steam fluidized bed reactor, a hydrogen separation unit, a hydrogen compression unit, and a combined heat and power unit fed by the off-gas of the separation unit. Process simulations were carried out to perform sensitivity analyses to understand the variation in bio-hydrogen production’s thermodynamic and environmental performance when the steam to biomass ratios (S/B) vary from 0 to 1.25 at 850 °C. In addition, energy and exergy efficiencies and the integrated renewability (IR) of bio-hydrogen production are evaluated. As main results, the analysis showed that the highest hydrogen yield is 40.1 kgH2 per mass of dry biomass at S/B = 1.25. Under these conditions, the exergy efficiency of the polygeneration system is 33%, the IR is 0.99, and the carbon footprint is −1.9 kgCO2-eq/kgH2. Negative carbon emissions and high values of the IR are observed due to the substitution of non-renewable resources operated by the cogenerated streams. The proposed system demonstrated for the first time the potential of bio-hydrogen production from citrus peel and the effects of steam flow variation on thermodynamic performance. Furthermore, the authors demonstrated how bio-hydrogen could be produced with minimal external energy input while cogenerating net heat and power by exploiting the off-gas in a cogeneration unit.
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Tandon, Mona, Shailesh Kumar Jadhav, and Kishan Lal Tiwari. "Optimization of pH and temperature for efficient bio-hydrogen production from lignocellulosic waste." NewBioWorld 1, no. 2 (2019): 28–32. http://dx.doi.org/10.52228/nbw-jaab.2019-1-2-6.

Testo completo
Abstract (sommario):
Biomass is the chief source of bio-hydrogen production which includes agricultural crops as well as their residues, various effluents generated in human habitat, aquatic plants and algae, and by-products released during food processing. Bio-hydrogen is selectively produced from biomass because of its cost-effectiveness, easy availability, high carbohydrate content and their ease of biodegradability. This research paper includes optimization of pH and temperature on bio-hydrogen producing capacity and their effect on bacterial growth.
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Tandon, Mona, Veena Thakur, Kunjlata Sao, and Shailesh Kumar Jadhav. "Water hyacinth producing bio-hydrogen by Klebsiella oxytoca ATCC 13182 and their optimization." NewBioWorld 1, no. 1 (2019): 1–4. http://dx.doi.org/10.52228/nbw-jaab.2019-1-1-1.

Testo completo
Abstract (sommario):
Our energy requirements are almost totally provided by carbon containing fossil sources such as oil, coal and nature gas, but they cause serious environmental problems during combustion such as CO2 emission and climate changes. Bio-hydrogen production from Klebsiella oxytoca ATCC 13182 and water hyacinth was taken as a substrate. Water hyacinth are good source of cellulose and hemicelluloses content used for bio-hydrogen production. This research paper includes the effect of age of inoculation, volume of inoculation and acid pre-treatment (concentrated sulfhuric acid) on bio-hydrogen production along with their specific hydrogen production rate (SHPR), carbon consuming efficiency (CCE) and pH.
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Ding, Zhijun, Yang Liu, Xin Yao, et al. "Thermodynamic Analysis of Hydrogen Production from Bio-Oil Steam Reforming Utilizing Waste Heat of Steel Slag." Processes 11, no. 8 (2023): 2342. http://dx.doi.org/10.3390/pr11082342.

Testo completo
Abstract (sommario):
(1) Background: The discharged temperature of steel slag is up to 1450 °C, representing heat having a high calorific value. (2) Motivation: A novel technology, integrating bio-oil steam reforming with waste heat recovery from steel slag for hydrogen production, is proposed, and it is demonstrated to be an outstanding method via thermodynamic calculation. (3) Methods: The equilibrium productions of bio-oil steam reforming in steel slag under different temperatures and S/C ratios (the mole ratio of steam to carbon) are obtained by the method of minimizing the Gibbs free energy using HSC 6.0. (4) Conclusions: The hydrogen yield increases first and then decreases with the increasing temperature, but it increases with the increasing S/C. Considering equilibrium calculation and actual application, the optimal temperature and S/C are 706 °C and 6, respectively. The hydrogen yield and hydrogen component are 109.13 mol/kg and 70.21%, respectively, and the carbon yield is only 0.08 mol/kg under optimal conditions. Compared with CaO in steel slag, iron oxides have less effect on hydrogen production from bio-oil steam reforming in steel slag. The higher the basicity of steel slag, the higher the obtained hydrogen yield and hydrogen component of bio-oil steam reforming in steel slag. It is demonstrated that appropriately decreasing iron oxides and increasing basicity could promote the hydrogen yield and hydrogen component of bio-oil steam reforming that utilizes steel slag as a heat carrier during the industrial application.
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Singh Yadav, Vinod, Vinoth R, and Dharmesh Yadav. "Bio-hydrogen production from waste materials: A review." MATEC Web of Conferences 192 (2018): 02020. http://dx.doi.org/10.1051/matecconf/201819202020.

Testo completo
Abstract (sommario):
When hydrogen burns in air, it produces nothing but water vapour. It is therefore the cleanest possible, totally non-polluting fuel. This fact has led some people to propose an energy economy based entirely on hydrogen, in which hydrogen would replace gasoline, oil, natural gas, coal, and nuclear power. Hydrogen is a clean energy source. Therefore, in recent years, demand on hydrogen production has increased considerably. Electrolysis of water, steam reforming of hydrocarbons and auto-thermal processes are well-known methods for hydrogen gas production, but not cost-effective due to high energy requirements. As compare to chemical methods, biological production of hydrogen gas has significant advantages such as bio-photolysis of water by algae, dark and photo-fermentation of organic materials, usually carbohydrates by bacteria. New approach for bio-hydrogen production is dark and photo-fermentation process but with some major problems like dark and photo-fermentative hydrogen production is the raw material cost. By using suitable bio-process technologies hydrogen can be produced through carbohydrate rich, nitrogen deficient solid wastes such as cellulose and starch containing agricultural and food industry wastes and some food industry wastewaters such as cheese whey, olive mill and baker's yeast industry wastewaters. Utilization of aforementioned wastes for hydrogen production provides inexpensive energy generation with simultaneous waste treatment. This review article summarizes bio-hydrogen production from some waste materials with recent developments and relative advantages.
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Yung-Tse Hung, Sanad AlBurgan, Howard H Paul, and Christopher R Huhnke. "Combined bioprocess for fermentative hydrogen production from food waste: A review." Global Journal of Engineering and Technology Advances 20, no. 2 (2024): 120–24. http://dx.doi.org/10.30574/gjeta.2024.20.2.0152.

Testo completo
Abstract (sommario):
Bio hydrogen is a cheaper, sustainable and safer source to produce fuel comparable to energy obtained from fossil fuels. There are many experimental methods to produce bio hydrogen using food wastes as substrates that are acted upon by specific bacterial and fungal strains. Some of the methods include batch-dark fermentation, solid-state dark fermentation, dark-anaerobic hydrogen fermentation and integrated light-dark fermentation. Different food wastes are used in these fermentation processes such as kitchen food waste, potatoes peels, sugary waste water, fish, meats, grains, cassava residues, corn pulp and starchy solution etc. These food wastes are rich source of main raw materials that are required for bio hydrogen production such as cellulose, carbohydrates, fats, proteins, lipids, starch, phosphorus, volatile solids, Published experimental and research approaches revealed that the use of mixed dark-photo fermentative bacterial consortium in flat photo bioreactors and fermenters resulted in higher yield. Combined dark-photo fermentation is an advanced and promising strategy for increasing overall yield of bio hydrogen.
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Yung-Tse, Hung, AlBurgan Sanad, H. Paul Howard, and R. Huhnke Christopher. "Combined bioprocess for fermentative hydrogen production from food waste: A review." Global Journal of Engineering and Technology Advances 20, no. 2 (2024): 120–24. https://doi.org/10.5281/zenodo.14921503.

Testo completo
Abstract (sommario):
Bio hydrogen is a cheaper, sustainable and safer source to produce fuel comparable to energy obtained from fossil fuels. There are many experimental methods to produce bio hydrogen using food wastes as substrates that are acted upon by specific bacterial and fungal strains. Some of the methods include batch-dark fermentation, solid-state dark fermentation, dark-anaerobic hydrogen fermentation and integrated light-dark fermentation. Different food wastes are used in these fermentation processes such as kitchen food waste, potatoes peels, sugary waste water, fish, meats, grains, cassava residues, corn pulp and starchy solution etc. These food wastes are rich source of main raw materials that are required for bio hydrogen production such as cellulose, carbohydrates, fats, proteins, lipids, starch, phosphorus, volatile solids, Published experimental and research approaches revealed that the use of mixed dark-photo fermentative bacterial consortium in flat photo bioreactors and fermenters resulted in higher yield. Combined dark-photo fermentation is an advanced and promising strategy for increasing overall yield of bio hydrogen.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Patel, Ronak, and Sanjay Patel. "Process Development for Bio-butanol Steam Reforming for PEMFC Application." International Journal of Engineering & Technology 7, no. 4.5 (2018): 110. http://dx.doi.org/10.14419/ijet.v7i4.5.20023.

Testo completo
Abstract (sommario):
In current study, process has been developed for hydrogen production from bio-butanol via steam reforming (SR) for proton exchange membrane fuel cell (PEMFC) application. Heat integration with pinch analysis method was carried out to reduce overall heating and cooling utility requirement of energy intensive SR process. Despite of highly endothermic nature of bio-butanol SR, process found to be self-sustained in terms of requirement of heating utility. Heat integrated process for hydrogen production from bio-butanol SR was found to be green process, which can be explored for its hydrogen production capacity.
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Jamilatun, Siti, Akhmad Sabilal Muhtadin, and Nurmustaqimaha Nurmustaqimaha. "Review: Biomass-Based Hydrogen Production Technology." Indonesian Journal of Chemical Engineering 1, no. 2 (2024): 66–79. https://doi.org/10.26555/ijce.v1i2.601.

Testo completo
Abstract (sommario):
One of the most efficient fuels for renewable energy is hydrogen. Currently, fossil fuels and their by-products produce most of the hydrogen with technologies that harm the environment, and fossil sources are rapidly decreasing in quantity. Environmentally friendly and pollution-free alternatives to fossil fuels are interesting to pursue. This paper explores advances in bio-hydrogen technology as an environmentally friendly and sustainable future technology development. Derivatives of crucial products from biomass, such as alcohol and glycerol, and methane-based reforming to produce hydrogen. Biological techniques to produce bio-hydrogen are exciting by fermentative, enzymatic, and biocatalytic methods. Also discussed are genetic engineering components, reactor configuration, and pretreatment. Low hydrogen yield and high cost are the two main problems in bio-hydrogen production. Also discussed are the costs, advantages, and disadvantages of various hydrogen generation methods. This article also discusses the promise of biohydrogen as a clean energy alternative and areas that require further research
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Tymchyshyn, Matthew, Zhongshun Yuan, and Chunbao (Charles) Xu. "Reforming of Glycerol into Bio-Crude: A Parametric Study." International Journal of Chemical Reactor Engineering 11, no. 1 (2013): 69–81. http://dx.doi.org/10.1515/ijcre-2012-0033.

Testo completo
Abstract (sommario):
Abstract The reforming of glycerol was investigated using a micro-reactor in the presence of MoCoP/zeolite catalyst. The parameters which were investigated include initial hydrogen pressure, reaction temperature, residence time, and feedstock concentration. The liquid products were separated into water-soluble components and bio-oil by liquid-liquid extraction with water and ethyl acetate. The bio-oil, gaseous products, char, and unreacted glycerol were quantified relative to the initial mass of glycerol feed. The composition of the bio-oil was determined by GC/MS. The optimum conditions for the reforming of glycerol into bio-crude in the presence of MoCoP/zeolite catalyst were found to be: 300°C reaction temperature, 5 MPa initial hydrogen pressure, 60 min reaction time, and 100% glycerol feed. While dilution of the glycerol feedstock with water had a negative effect on bio-oil yield, reforming of pure glycerol produced the highest bio-oil yield (40 wt.% at 300°C, 1 h, and 5 MPa H2). The amount of char deposited on the catalyst decreased with extended reaction time, increased reaction temperature, and elevated initial hydrogen pressure.
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Wang, Bing, Rui Xiao, and Huiyan Zhang. "An Overview of Bio-oil Upgrading with High Hydrogen-containing Feedstocks to Produce Transportation Fuels: Chemistry, Catalysts, and Engineering." Current Organic Chemistry 23, no. 7 (2019): 746–67. http://dx.doi.org/10.2174/1385272823666190405145007.

Testo completo
Abstract (sommario):
As an alternative to increasingly depleted traditional petroleum fuel, bio-oil has many advantages: high energy density, flexibility, easy storage and transportation. Nevertheless, bio-oil also presents some unwanted characteristics such as high viscosity, acidity, oxygen content and chemical instability. The process of bio-oil upgrading is necessary before utilization as transportation fuels. In addition, the bio-oil has low effective hydrogen/ carbon molar ratio (H/Ceff) which may lead to coke formation and hence deactivation of the catalyst during the upgrading process. Therefore, it seemed that co-refining of biooil with other higher hydrogen-containing feedstocks is necessary. This paper provides a broad review of the bio-oil upgrading with high hydrogen-containing feedstocks to produce transportation fuels: chemistry, catalyst, and engineering research aspects were discussed. The different thermochemical conversion routes to produce bio-oil and its physical-chemical properties are discussed firstly. Then the bio-oil upgrading research using traditional technologies and common catalysts that emerged in recent years are briefly reviewed. Furthermore, the applications of high H/Ceff feedstock to produce high-quality of bio-oil are also discussed. Moreover, the emphasis is placed on co-refining technologies to produce transportation fuels. The processes of co-refining bio-oil and vacuum gas oil in fluid catalytic cracking (FCC) unit for transportation fuels from laboratory scale to pilot scale are also covered in this review. Co-refining technology makes it possible for commercial applications of bio-oil. Finally, some suggestions and prospects are put forward.
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Margarida, B. R., L. R. S. Kanda, and L. F. L. Luz Jr. "SIMULATION AND ECONOMIC FEASIBILITY ANALYSIS OF BIO-JET FUEL PRODUCTION PROCESS USING NON-FOSSIL HYDROGEN OBTAINED FROM METALLIC ZINC OXIDATION." Brazilian Journal of Petroleum and Gas 19, no. 1 (2025): 47–52. https://doi.org/10.5419/bjpg2025-0005.

Testo completo
Abstract (sommario):
Biofuel production, particularly bio-jet fuel, has been incentivized due to the potential environmental benefits it can create. However, its production often relies on hydrogen from fossil sources, diminishing its sustainability. This work proposes a more sustainable alternative to the production of bio-jet fuel which involves generating hydrogen through the oxidation of metallic zinc in water, a safer and cleaner process. In this context, the study simulates bio-jet fuel production using non-fossil hydrogen from zinc oxidation. The process, modeled with Aspen Plus® V10, combines fatty acids and hydrogen to produce biokerosene, alongside zinc oxide, a commercially valuable byproduct. The proposed method operates under mild conditions (220 °C, 24 bar), reducing refinery dependence and offering economic advantages. The system was found to be economically viable with a 6-year investment payback and low CO2 emissions (4 kg CO2eq/kg H2), comparable to blue or turquoise hydrogen. Overall, this approach presents a sustainable and economically viable alternative for bio-jet fuel production, reducing the reliance on fossil sources and promoting greener aviation fuel.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

KINOUCHI, KOUJI, MASAHIRO KATOH, TOSHIHIDE HORIKAWA, TAKUSHI YOSHIKAWA, and MAMORU WADA. "HYDROGEN PERMEABILITY OF PALLADIUM MEMBRANE FOR STEAM-REFORMING OF BIO-ETHANOL USING THE MEMBRANE REACTOR." International Journal of Modern Physics: Conference Series 06 (January 2012): 7–12. http://dx.doi.org/10.1142/s2010194512002851.

Testo completo
Abstract (sommario):
A Palladium membrane was prepared by electro-less plating method on porous stainless steel. The catalytic hydrogen production by steam-reforming of biomass-derived ethanol (bio-ethanol) using a Pd membrane was analyzed by comparing it with those for the reaction using reagent ethanol (the reference sample). And the hydrogen permeability of the palladium membrane was investigated using the same palladium membrane ( H 2/ He selectivity = 249, at ΔP = 0.10 MPa, 873 K). As a result, for bio-ethanol, deposited carbon had a negative influence on the hydrogen-permeability of the palladium membrane and hydrogen purity. The sulfur content in the bio-ethanol may have promoted carbon deposition. By using a palladium membrane, it was confirmed that H 2 yield (%) was increased. It can be attributed that methane was converted from ethanol and produced more hydrogen by steam reforming, due to the in situ removal of hydrogen from the reaction location.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Ding, Zhijun, Yang Liu, Xin Yao, et al. "The Thermodynamic Characterizations of Hydrogen Production from Catalyst-Enhanced Steam Reforming of Bio-Oil over Granulated Blast Furnace Slag as Heat Carrier." Processes 11, no. 8 (2023): 2341. http://dx.doi.org/10.3390/pr11082341.

Testo completo
Abstract (sommario):
To promote the efficiency of waste heat recovery from granulated blast furnace (BF) slag, a novel method of catalyst-enhanced steam reforming of bio-oil to recover heat from slag is proposed. CaO is utilized as a superior catalyst for the process of catalyst-enhanced steam reforming. The thermodynamic production of the catalyst-enhanced steam reforming of bio-oil in granulated BF slag is obtained using HSC 6.0 software. The optimal conditions are mainly assessed according to the hydrogen yield, hydrogen concentration and carbon production. Through the thermodynamic production and industrial application, the temperature of 608 °C, S/C of eight and pressure of 1 bar are found as the optimal conditions. At the optimal conditions, the hydrogen yield, hydrogen concentration and carbon production are 95.25%, 76.89% and 0.28 mol/kg, respectively. Taking the temperature of 625 °C, S/C of eight and pressure of 1 bar as an example, the catalyst could improve the hydrogen yield and hydrogen concentration from 93.99% and 70.31% to 95.15% and 76.49%, respectively. It is implied that utilizing the catalyst could promote the hydrogen yield and hydrogen concentration of steam reforming of bio-oil to recover waste heat from granulated BF slag. The mechanism of catalyst-enhanced steam reforming of bio-oil to recover waste heat from granulated BF slag is obtained to guide the subsequent industry application.
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Nusaibah, Nusaibah, Khaswar Syamsu, and Dwi Susilaningsih. "Bio-hydrogen Production From Vinasse By Using Agent Fermentation Of Photosynthetic Bacteria Rhodobium marinum." Indonesian Journal of Environmental Management and Sustainability 4, no. 1 (2020): 23–27. http://dx.doi.org/10.26554/ijems.2020.4.1.23-27.

Testo completo
Abstract (sommario):
The aim of this research was to find out the effect of substrate concentrations (COD) of vinasse and the length of fermentation time to bio-hydrogen gas production using agent fermentation of photosynthetic bacteria, Rhodobium marinum. The production of bio-hydrogen was examined by varying COD of vinasse (10,000; 20,000; 30,000; 40,000; 50,000 mg COD/L) at certain fermentation time in the third, sixth and ninth day. The highest Hydrogen gas was obtained at ninth day of fermentation (82.66±18.6 mL). The highest Hydrogen Production Rate (HPR) and COD removal rate were obtained at concentration 50,000 mg COD/L, namely 109.98 mL H2/L/d and 1437.66 mg COD/L/d, respectively. Thus it can be concluded, the concentration of substrates (COD) from vinasse and the length of fermentation time have an effect on production of bio-hydrogen gas using Rhodobium marinum
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Kritzinger, Niel, Ravi Ravikumar, Sunil Singhal, Katie Johnson, and Kakul Singh. "Blue hydrogen production: a case study to quantify the reduction in CO2 emission in a steam methane reformer based hydrogen plant." APPEA Journal 59, no. 2 (2019): 619. http://dx.doi.org/10.1071/aj18164.

Testo completo
Abstract (sommario):
In Australia, and globally, hydrogen is primarily produced from natural gas via steam methane reforming. This process also produces CO2, which is typically vented to the atmosphere. Under this configuration, the hydrogen produced is known as grey hydrogen (carbon producing). However, if the CO2 from this process is captured and stored after it is produced, the hydrogen product is CO2-neutral, or ‘blue hydrogen’. To enable production of blue hydrogen from existing natural gas steam methane reformers (SMRs) in Australia, gasification of biomass/bio waste can be utilised to produce fuel gas for use in a SMR-based hydrogen plant, and the CO2 in the shifted syngas can be removed as pure CO2 either for sequestration, enhanced oil recovery, or enhanced coal bed methane recovery. Australian liquefied natural gas that is exported and utilised as feedstock to existing SMRs in other countries can incorporate carbon emission reduction techniques for blue hydrogen production. The use of bio-derived syngas as fuel will generate hydrogen with only bio-derived CO2 emissions. Additional carbon credit can be obtained by replacing petrol or diesel consuming automobiles with fuel cell vehicles powered by hydrogen derived from gasification of biomass.
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Simasatitkul, Lida, Apiwat Lakkhanasombut, Worawit Morin, Supachai Jedsadajerm, Suksun Amornraksa, and Karittha Im-orb. "Performance Analysis of Integral Process of Bio-Oil Production, Bio-Oil Upgrading, and Hydrogen Production from Sewage Sludge." E3S Web of Conferences 428 (2023): 01004. http://dx.doi.org/10.1051/e3sconf/202342801004.

Testo completo
Abstract (sommario):
This research investigated the production of bio-oil through the hydrothermal liquefaction (HTL) process using sewage sludge from wastewater, along with the hydrotreating of the bio-oil. The simulation process began with a wastewater flow rate of 460 tonnes/day, where the feedstock was divided into two streams. The first stream underwent the HTL process, while the other was directed towards hydrogen production. The resulting products included gaseous products, crude bio-oil, and heavy liquid. The crude bio-oil was further upgraded by introducing hydrogen, which was obtained through gasification and purified by gas separation using a palladium membrane. The primary product mainly comprised alkane, with a carbon content of 85.89% and hydrogen content of 14.11%. For the purification of gasoline, kerosene, diesel, and fuel oil, a fractionation distillation tower arrangement was designed. In addition, Additionally, the gaseous products underwent fractionation distillation to obtain 98% nitrogen and 99.9% liquid carbon dioxide. Considering the carbon footprint, it was observed that the bio-oil production process resulted in the highest greenhouse gas (GHG) emissions.
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Zhang, Shuo. "Diverse sustainable methods for future jet engine." Applied and Computational Engineering 11, no. 1 (2023): 143–48. http://dx.doi.org/10.54254/2755-2721/11/20230223.

Testo completo
Abstract (sommario):
With global concerns over CO2 emissions and climate change, the aviation industry is investing in renewable fuels and sustainable engines. Bio-Synthetic Paraffinic Kerosene (Bio-SPK) and hydrogen are two significant biofuels that can replace fossil fuels in jet engines. Biofuel is considered a sustainable fuel; it is possible to replace fossil fuel in jet engines. Bio-SPK is an aviation fuel made from plant-derived lipids and processed to have similar properties to traditional jet fuel. It offers significant emissions savings compared to Jet-A1 but is not widely available due to high production costs and limited feedstock availability. While it can improve fuel efficiency and reduce emissions, it has lower energy density than conventional aviation fuels, potentially reducing aircraft range or payload capacity. Hydrogen produces only water but requires careful extraction or manufacturing. Green hydrogen is carbon-neutral, grey hydrogen generates carbon, and blue hydrogen captures and stores carbon. However, most hydrogen is currently generated as grey hydrogen, which offers less environmental benefit than directly burning fossil fuels. This work provides an overview of current and future sustainable jet engine technologies.
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Marks, Stanislaw, Jacek Dach, Jose Luis Garcia-Morales, and Francisco Jesus Fernandez-Morales. "Bio-Energy Generation from Synthetic Winery Wastewaters." Applied Sciences 10, no. 23 (2020): 8360. http://dx.doi.org/10.3390/app10238360.

Testo completo
Abstract (sommario):
In Spain, the winery industry exerts a great influence on the national economy. Proportional to the scale of production, a significant volume of waste is generated, estimated at 2 million tons per year. In this work, a laboratory-scale reactor was used to study the feasibility of the energetic valorization of winery effluents into hydrogen by means of dark fermentation and its subsequent conversion into electrical energy using fuel cells. First, winery wastewater was characterized, identifying and determining the concentration of the main organic substrates contained within it. To achieve this, a synthetic winery effluent was prepared according to the composition of the winery wastewater studied. This effluent was fermented anaerobically at 26 °C and pH = 5.0 to produce hydrogen. The acidogenic fermentation generated a gas effluent composed of CO2 and H2, with the percentage of hydrogen being about 55% and the hydrogen yield being about 1.5 L of hydrogen at standard conditions per liter of wastewater fermented. A gas effluent with the same composition was fed into a fuel cell and the electrical current generated was monitored, obtaining a power generation of 1 W·h L−1 of winery wastewater. These results indicate that it is feasible to transform winery wastewater into electricity by means of acidogenic fermentation and the subsequent oxidation of the bio-hydrogen generated in a fuel cell.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Stepacheva, A., P. Guseva, and A. Dozhdelev. "Supercritical Solvent Composition Influence on Bio-oil Model Compound Deoxygenation." Bulletin of Science and Practice 5, no. 11 (2019): 18–25. http://dx.doi.org/10.33619/2414-2948/48/02.

Testo completo
Abstract (sommario):
Hydrofining of oxygen-containing compounds of bio-oil allows efficient use of the final product as a liquid fuel from biomass. Deoxygenation is considered to be one of the most perspective ways to modernize bio-oil. Generally, deoxygenation is carried out under fairly strict conditions in the presence of hydrogen in a medium of high-boiling hydrocarbons. This paper describes a new approach to deoxygenation of model compounds of bio-oil using supercritical liquids as a solvent and hydrogen donor. The possibility of using a complex solvent consisting of non-polar n-hexane with a low critical point (Tc = 234.5 °C, Pc = 3.02 MPa) and propanol-2 used as a hydrogen donor is evaluated. Experiments have shown that in the presence of 20 vol. % propanol-2 in n-hexane a maximum (99%) conversion of model bio-oil compounds with the formation of phenols with a yield of up to 95% is observed.
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Stepacheva, A., P. Guseva, and A. Dozhdelev. "Supercritical Solvent Composition Influence on Bio-oil Model Compound Deoxygenation." Bulletin of Science and Practice 5, no. 11 (2019): 18–25. https://doi.org/10.33619/2414-2948/48/02.

Testo completo
Abstract (sommario):
Hydrofining of oxygen-containing compounds of bio-oil allows efficient use of the final product as a liquid fuel from biomass. Deoxygenation is considered to be one of the most perspective ways to modernize bio-oil. Generally, deoxygenation is carried out under fairly strict conditions in the presence of hydrogen in a medium of high-boiling hydrocarbons. This paper describes a new approach to deoxygenation of model compounds of bio-oil using supercritical liquids as a solvent and hydrogen donor. The possibility of using a complex solvent consisting of non-polar n-hexane with a low critical point (Tc = 234.5 °C, Pc = 3.02 MPa) and propanol-2 used as a hydrogen donor is evaluated. Experiments have shown that in the presence of 20 vol. % propanol-2 in n-hexane a maximum (99%) conversion of model bio-oil compounds with the formation of phenols with a yield of up to 95% is observed.
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Yue, Xiao Fang, Hong Yuan Sun, Xu Xin Zhao, and Li Qing Zhao. "Research Progress of Food Waste Fermentation for Bio-Hydrogen Production." Advanced Materials Research 550-553 (July 2012): 569–73. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.569.

Testo completo
Abstract (sommario):
Hydrogen is a valuable gas as a clean energy source and as feedstock for some industries. Therefore, demand on hydrogen production has increased considerably in recent years. Food waste is an important part of urban living garbage,which is full of organic matter and easy to be degraded. So, biological production of hydrogen gas from food waste fermentation has significant advantages for providing inexpensive and clean energy generation to help meet the needs of carbon emission reduction with simultaneous waste treatment. This article reviews the following aspects: mechanism of fermentative hydrogen production by bacteria, and factors influencing fermentative bio-hydrogen production. In addition,the challenges and prospects of bio- hydrogen production are also reviewed.
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Vourdoubas, John, and Vasiliki K. Skoulou. "Possibilities of Upgrading Solid Underutilized Lingo-cellulosic Feedstock (Carob Pods) to Liquid Bio-fuel: Bio-ethanol Production and Electricity Generation in Fuel Cells - A Critical Appraisal of the Required Processes." Studies in Engineering and Technology 4, no. 1 (2017): 25. http://dx.doi.org/10.11114/set.v4i1.2170.

Testo completo
Abstract (sommario):
The exploitation of rich in sugars lingo-cellulosic residue of carob pods for bio-ethanol and bio-electricity generation has been investigated. The process could take place in two (2) or three (3) stages including: a) bio-ethanol production originated from carob pods, b) direct exploitation of bio-ethanol to fuel cells for electricity generation, and/or c) steam reforming of ethanol for hydrogen production and exploitation of the produced hydrogen in fuel cells for electricity generation. Surveying the scientific literature it has been found that the production of bio-ethanol from carob pods and electricity fed to the ethanol fuel cells for hydrogen production do not present any technological difficulties. The economic viability of bio-ethanol production from carob pods has not yet been proved and thus commercial plants do not yet exist. The use, however, of direct fed ethanol fuel cells and steam reforming of ethanol for hydrogen production are promising processes which require, however, further research and development (R&D) before reaching demonstration and possibly a commercial scale. Therefore the realization of power generation from carob pods requires initially the investigation and indication of the appropriate solution of various technological problems. This should be done in a way that the whole integrated process would be cost effective. In addition since the carob tree grows in marginal and partly desertified areas mainly around the Mediterranean region, the use of carob’s fruit for power generation via upgrading of its waste by biochemical and electrochemical processes will partly replace fossil fuels generated electricity and will promote sustainability.
Gli stili APA, Harvard, Vancouver, ISO e altri
38

He, Chao, Baoyi Qi, Youzhou Jiao, et al. "Potentials of bio-hydrogen and bio-methane production from diseased swines." International Journal of Hydrogen Energy 45, no. 59 (2020): 34473–82. http://dx.doi.org/10.1016/j.ijhydene.2019.08.215.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Caricato, A., A. P. Carlucci, A. Ficarella, et al. "Effects of low-grade gas composition on the energy/exergy performance of a polygeneration system (CH 2 HP) based on biomass gasification and ICE." Journal of Physics: Conference Series 2385, no. 1 (2022): 012126. http://dx.doi.org/10.1088/1742-6596/2385/1/012126.

Testo completo
Abstract (sommario):
Abstract Bio-hydrogen from sustainable biomass (i.e. agro-industrial residues) gasification can play a relevant role in the hydrogen economy, providing constant hydrogen from renewable sources. Nowadays, most hydrogen production systems integrate one or more water-gas shift (WGS) units to maximize the hydrogen yield that, however, needs additional syngas treatments, investment and operational costs. Besides, different electricity inputs are needed along the process to power the compression of raw syngas, shifted syngas, and pure hydrogen to the desired pressure. This common process integration with WGS generates a kind of off-gas from the hydrogen separation unit whose composition may or may not be suitable for power production, depending on the operating conditions of the gasification unit. In this regard, this work proposes a different approach in which no WGS reactors are involved and the off-gas is used to generate heat and power to provide the energy input needed by the system. In particular, the authors tested the bio-syngas and the corresponding off-gas in a 4-cylinders, spark ignition natural gas internal combustion engine operated in cogeneration mode with the aim to analyse the effect of removing the hydrogen from the original bio-syngas on mechanical/electric and thermal power, on fuel efficiency and CO2 specific emission.
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Mahmood, Tariq, Bakht Zada, and Malik S. A. "Effect of Iron Nanoparticles on Hyacinth's Fermentation." International Journal of Sciences Volume 2, no. 2013-10 (2013): 106–21. https://doi.org/10.5281/zenodo.3348497.

Testo completo
Abstract (sommario):
Biomass feedstock is desirable for bio-hydrogen and bioethanol production as they have less competition with food crops and are hard to be localized geographically. Water hyacinth (Eichhornia crassipes) is the fastest growing plant, containing abundant of cellulose and hemicellulose which can be easily converted into fermentable sugars and is more suitable feedstock for bio-hydrogen and bioethanol. In this study bio-hydrogen and bioethanol were produced from dry biomass of water hyacinth by microbial fermentation under influence of iron nanoparticles. For fermentative bio-hydrogen production dry powdered biomass was first pretreated and then saccharified into fermentable sugars by enzymes. Sugars of enzymatic hydrolysis were xylose and glucose with concentration of 9.0% and 8.0% respectively. For bioethanol production dry plant was saccharified with 1% sulfuric acid solution, autoclaved at 121°C, 15 lbs for 1.5h. The reducing sugar obtained in this method containing 5% glucose. Results showed that the specific concentration of iron nanoparticles was able to enhance the hydrogen yield. Ethanol yield was enhanced by iron nanoparticles by using it in certain concentration range during fermentation. Maximum hydrogen yield of 57mL/g of dry weight based plant biomass was obtained at 250mg/L concentration of iron nanoparticles which is 85.50% of the maximum theoretical yield. The maximum ethanol yield of 0.0232g of dry weight plant biomass was obtained at concentration of 150mg/L of iron nanoparticles. The ethanol yield constitutes 90.98% of the maximum theoretical yield at iron nanoparticles.Read Complete Article at ijSciences: V2201309323
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Jomnonkhaow, Umarin, Sureewan Sittijunda, and Alissara Reungsang. "Hybrid Process for Bio-hydrogen and Methane Production from Hydrogenic Effluent: A Mini Review." Jurnal Kejuruteraan 33, no. 3 (2021): 385–90. http://dx.doi.org/10.17576/jkukm-2021-33(3)-01.

Testo completo
Abstract (sommario):
Hydrogenic effluent is the effluent from the bio-hydrogen production process via dark fermentation. It mainly consists of volatile fatty acids, residual sugars, and organic solid residues with a high carbon oxygen demand (COD), which prohibits direct discharge to the environment. Therefore, a post-process after dark fermentation to utilize the organic substances in the hydrogenic effluent is needed to complete the organic conversion and reduce the COD load. This review discussed the use of organic substances in the hydrogenic effluent to produce bioenergy, including bio-hydrogen, through photo fermentation and microbial electrolysis cells, and to produce methane by anaerobic digestion. Furthermore, the advantages and disadvantages of using hydrogenic effluent to generate bio-hydrogen and methane and the challenges and future perspectives on utilizing the hydrogenic effluent are discussed.
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Mayorga, "M A. "., "J G. ". Cadavid, "O Y. ". Suárez, et al. "Bio-hydrogen production using metallic catalysts." Revista Mexicana de Ingeniería Química 19, no. 3 (2020): 1103–15. http://dx.doi.org/10.24275/rmiq/cat652.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Jayalakshmi, S., Kurian Joseph, and V. Sukumaran. "Bio hydrogen production from kitchen waste." International Journal of Environment and Waste Management 2, no. 1/2 (2008): 75. http://dx.doi.org/10.1504/ijewm.2008.016993.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Xia, Ao, Amita Jacob, Christiane Herrmann, and Jerry D. Murphy. "Fermentative bio-hydrogen production from galactose." Energy 96 (February 2016): 346–54. http://dx.doi.org/10.1016/j.energy.2015.12.087.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Schollhammer, Philippe, Jean Talarmin, Philippe Schollhammer, and Jean Talarmin. "Bio-inspired hydrogen production/uptake catalysis." Comptes Rendus Chimie 11, no. 8 (2008): 789. http://dx.doi.org/10.1016/j.crci.2008.04.007.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Bo, Wang, Liu Yongye, Qiao Yahua, et al. "Technology Research on Bio-Hydrogen Production." Procedia Engineering 43 (2012): 53–58. http://dx.doi.org/10.1016/j.proeng.2012.08.010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Lin, Chiu-Yue, Jun Miyake, and Alissara Reungsang. "Preface – 4th Asian Bio-Hydrogen Symposium." International Journal of Hydrogen Energy 36, no. 14 (2011): 8680. http://dx.doi.org/10.1016/j.ijhydene.2011.05.123.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Kapdan, Ilgi Karapinar, and Fikret Kargi. "Bio-hydrogen production from waste materials." Enzyme and Microbial Technology 38, no. 5 (2006): 569–82. http://dx.doi.org/10.1016/j.enzmictec.2005.09.015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Arslan, C., A. Sattar, C. Ji, S. Sattar, K. Yousaf, and S. Hashim. "Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling." Biogeosciences 12, no. 21 (2015): 6503–14. http://dx.doi.org/10.5194/bg-12-6503-2015.

Testo completo
Abstract (sommario):
Abstract. The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under thermophilic temperature condition. Most of the production was observed during the first 48 h of incubation, which continued until 72 h of incubation. The decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of the glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS−1, 131.38 mL COD−1, and 44.90 mL glucose−1 were obtained from thermophilic food waste, thermophilic noodle waste and mesophilic rice waste, respectively. The production of volatile fatty acids increased with an increase in time and temperature in food waste and noodle waste reactors whereas they decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type and 3-D response surface plots developed by using models developed. These plots developed a better understanding regarding the impact of temperature and incubation time on bio-hydrogen production trend, glucose consumption during incubation and volatile fatty acids production.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Reza, Md Sumon, Ashfaq Ahmed, Wahyu Caesarendra, et al. "Acacia Holosericea: An Invasive Species for Bio-char, Bio-oil, and Biogas Production." Bioengineering 6, no. 2 (2019): 33. http://dx.doi.org/10.3390/bioengineering6020033.

Testo completo
Abstract (sommario):
To evaluate the possibilities for biofuel and bioenergy production Acacia Holosericea, which is an invasive plant available in Brunei Darussalam, was investigated. Proximate analysis of Acacia Holosericea shows that the moisture content, volatile matters, fixed carbon, and ash contents were 9.56%, 65.12%, 21.21%, and 3.91%, respectively. Ultimate analysis shows carbon, hydrogen, and nitrogen as 44.03%, 5.67%, and 0.25%, respectively. The thermogravimetric analysis (TGA) results have shown that maximum weight loss occurred for this biomass at 357 °C for pyrolysis and 287 °C for combustion conditions. Low moisture content (<10%), high hydrogen content, and higher heating value (about 18.13 MJ/kg) makes this species a potential biomass. The production of bio-char, bio-oil, and biogas from Acacia Holosericea was found 34.45%, 32.56%, 33.09% for 500 °C with a heating rate 5 °C/min and 25.81%, 37.61%, 36.58% with a heating rate 10 °C/min, respectively, in this research. From Fourier transform infrared (FTIR) spectroscopy it was shown that a strong C–H, C–O, and C=C bond exists in the bio-char of the sample.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!