Letteratura scientifica selezionata sul tema "BREAKHIS DATASET"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "BREAKHIS DATASET".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "BREAKHIS DATASET"
Joshi, Shubhangi A., Anupkumar M. Bongale, P. Olof Olsson, Siddhaling Urolagin, Deepak Dharrao e Arunkumar Bongale. "Enhanced Pre-Trained Xception Model Transfer Learned for Breast Cancer Detection". Computation 11, n. 3 (13 marzo 2023): 59. http://dx.doi.org/10.3390/computation11030059.
Testo completoXu, Xuebin, Meijuan An, Jiada Zhang, Wei Liu e Longbin Lu. "A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism". Computational and Mathematical Methods in Medicine 2022 (14 maggio 2022): 1–14. http://dx.doi.org/10.1155/2022/8585036.
Testo completoOgundokun, Roseline Oluwaseun, Sanjay Misra, Akinyemi Omololu Akinrotimi e Hasan Ogul. "MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors". Sensors 23, n. 2 (6 gennaio 2023): 656. http://dx.doi.org/10.3390/s23020656.
Testo completoUkwuoma, Chiagoziem C., Md Altab Hossain, Jehoiada K. Jackson, Grace U. Nneji, Happy N. Monday e Zhiguang Qin. "Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head". Diagnostics 12, n. 5 (5 maggio 2022): 1152. http://dx.doi.org/10.3390/diagnostics12051152.
Testo completoMohanakurup, Vinodkumar, Syam Machinathu Parambil Gangadharan, Pallavi Goel, Devvret Verma, Sameer Alshehri, Ramgopal Kashyap e Baitullah Malakhil. "Breast Cancer Detection on Histopathological Images Using a Composite Dilated Backbone Network". Computational Intelligence and Neuroscience 2022 (6 luglio 2022): 1–10. http://dx.doi.org/10.1155/2022/8517706.
Testo completoNahid, Abdullah-Al, Mohamad Ali Mehrabi e Yinan Kong. "Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering". BioMed Research International 2018 (2018): 1–20. http://dx.doi.org/10.1155/2018/2362108.
Testo completoSun, Yixin, Lei Wu, Peng Chen, Feng Zhang e Lifeng Xu. "Using deep learning in pathology image analysis: A novel active learning strategy based on latent representation". Electronic Research Archive 31, n. 9 (2023): 5340–61. http://dx.doi.org/10.3934/era.2023271.
Testo completoIstighosah, Maie, Andi Sunyoto e Tonny Hidayat. "Breast Cancer Detection in Histopathology Images using ResNet101 Architecture". sinkron 8, n. 4 (1 ottobre 2023): 2138–49. http://dx.doi.org/10.33395/sinkron.v8i4.12948.
Testo completoLi, Lingxiao, Niantao Xie e Sha Yuan. "A Federated Learning Framework for Breast Cancer Histopathological Image Classification". Electronics 11, n. 22 (16 novembre 2022): 3767. http://dx.doi.org/10.3390/electronics11223767.
Testo completoBurrai, Giovanni P., Andrea Gabrieli, Marta Polinas, Claudio Murgia, Maria Paola Becchere, Pierfranco Demontis e Elisabetta Antuofermo. "Canine Mammary Tumor Histopathological Image Classification via Computer-Aided Pathology: An Available Dataset for Imaging Analysis". Animals 13, n. 9 (6 maggio 2023): 1563. http://dx.doi.org/10.3390/ani13091563.
Testo completoTesi sul tema "BREAKHIS DATASET"
Zhang, Hang. "Distributed Support Vector Machine With Graphics Processing Units". ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/991.
Testo completoSAADIZADEH, SAMAN. "SIGNIFICANTLY ACCURATE SYSTEM FOR BREAST CANCER MALIGNANCY OR BENIGN CLASSIFICATION". Thesis, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19429.
Testo completoLibri sul tema "BREAKHIS DATASET"
Tan, Yeling. Disaggregating China, Inc. Cornell University Press, 2021. http://dx.doi.org/10.7591/cornell/9781501759635.001.0001.
Testo completoLyall, Jason. Divided Armies. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691192444.001.0001.
Testo completoCapitoli di libri sul tema "BREAKHIS DATASET"
Agarwal, Pinky, Anju Yadav e Pratistha Mathur. "Breast Cancer Prediction on BreakHis Dataset Using Deep CNN and Transfer Learning Model". In Data Engineering for Smart Systems, 77–88. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2641-8_8.
Testo completoSchirmer, Pascal A., e Iosif Mporas. "Binary versus Multiclass Deep Learning Modelling in Energy Disaggregation". In Springer Proceedings in Energy, 45–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_6.
Testo completoDellmuth, Lisa. "EU Spending Effects on Regional Well-Being". In Is Europe Good for You?, 77–98. Policy Press, 2021. http://dx.doi.org/10.1332/policypress/9781529217469.003.0005.
Testo completoThomas, D. J., B. D. Sutton, J. W. Ferguson e E. Price. "Spatially Resolved Detonation Pressure Data From Rate Sticks". In Future Developments in Explosives and Energetics, 105–19. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781788017855-00105.
Testo completoThomas, D. J., B. D. Sutton, J. W. Ferguson e E. Price. "Spatially Resolved Detonation Pressure Data From Rate Sticks". In Future Developments in Explosives and Energetics, 105–19. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839162350-00105.
Testo completoAtti di convegni sul tema "BREAKHIS DATASET"
MAYOUF, MOUNA SABRINE, e FLORENCE DUPIN DE SAINT-Cyr. "Curriculum Incremental Deep Learning on BreakHis DataSet". In ICCTA 2022: 2022 8th International Conference on Computer Technology Applications. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3543712.3543747.
Testo completoSantos, Stefane A., Andressa G. Moreira e Ialis C. P. Junior. "Análise comparativa da influência de otimizadores no desempenho de uma CNN para detecção do câncer de mama". In Escola Regional de Computação Ceará, Maranhão, Piauí. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/ercemapi.2021.17901.
Testo completoFreitas, Mario Pinto, Marcos Gabriel Mendes Lauande, Geraldo Braz Júnior, Marcus Vinicius Oliveira, Gabriel Costa, Matheus Levy, Anselmo Cardoso de Paiva e João D. Sousa de Almeida. "Aplicando MultiInstance Learning (MIL) para o Diagnóstico de Câncer de Mama em Imagens Histopatológicas". In Simpósio Brasileiro de Computação Aplicada à Saúde. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/sbcas.2022.222673.
Testo completoSantos, Marta C., Ana I. Borges, Davide R. Carneiro e Flora J. Ferreira. "Synthetic dataset to study breaks in the consumer’s water consumption patterns". In ICoMS 2021: 2021 4th International Conference on Mathematics and Statistics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3475827.3475836.
Testo completoPal, S., C. Iek, L. J. Peltier, A. Smirnov, K. J. Knight, D. Zheng e J. Jarvis. "Verification and Validation of CFD Model to Predict Jet Loads and Blast Wave Pressures From High Pressure Superheated Steam Line Break". In ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/power2016-59675.
Testo completoLamb, Nikolas, Cameron Palmer, Benjamin Molloy, Sean Banerjee e Natasha Kholgade Banerjee. "Fantastic Breaks: A Dataset of Paired 3D Scans of Real-World Broken Objects and Their Complete Counterparts". In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.00454.
Testo completoPazi, Idan, Dvir Ginzburg e Dan Raviv. "Unsupervised Scale-Invariant Multispectral Shape Matching". In 24th Irish Machine Vision and Image Processing Conference. Irish Pattern Recognition and Classification Society, 2022. http://dx.doi.org/10.56541/vhmq4826.
Testo completoHan, Jiyeon, Kyowoon Lee, Anh Tong e Jaesik Choi. "Confirmatory Bayesian Online Change Point Detection in the Covariance Structure of Gaussian Processes". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/340.
Testo completoTolstaya, E., A. Shakirov e M. Mezghani. "Lithology Prediction from Drill Cutting Images Using Convolutional Neural Networks and Automated Dataset Cleaning". In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216418-ms.
Testo completoLi, Boyang, Yurong Cheng, Ye Yuan, Guoren Wang e Lei Chen. "Simultaneous Arrival Matching for New Spatial Crowdsourcing Platforms". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/178.
Testo completo