Letteratura scientifica selezionata sul tema "Coalescence compacte de binaire"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Coalescence compacte de binaire".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Coalescence compacte de binaire"
Spera, Mario, Alessandro Alberto Trani e Mattia Mencagli. "Compact Binary Coalescences: Astrophysical Processes and Lessons Learned". Galaxies 10, n. 4 (25 giugno 2022): 76. http://dx.doi.org/10.3390/galaxies10040076.
Testo completoGraziani, Luca. "Hunting for Dwarf Galaxies Hosting the Formation and Coalescence of Compact Binaries". Physics 1, n. 3 (6 dicembre 2019): 412–29. http://dx.doi.org/10.3390/physics1030030.
Testo completoKalogera, V. "Close Binaries with Two Compact Objects". International Astronomical Union Colloquium 177 (2000): 579–84. http://dx.doi.org/10.1017/s0252921100060668.
Testo completoRasio, Frederic A., e Stuart L. Shapiro. "Hydrodynamic Evolution of Coalescing Compact Binaries". Symposium - International Astronomical Union 165 (1996): 17–28. http://dx.doi.org/10.1017/s0074180900055522.
Testo completoWEN, LINQING, e QI CHU. "EARLY DETECTION AND LOCALIZATION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCES". International Journal of Modern Physics D 22, n. 11 (settembre 2013): 1360011. http://dx.doi.org/10.1142/s0218271813600110.
Testo completoShapiro, Stuart L. "Gravitomagnetic Induction during the Coalescence of Compact Binaries". Physical Review Letters 77, n. 22 (25 novembre 1996): 4487–90. http://dx.doi.org/10.1103/physrevlett.77.4487.
Testo completoChen, Bing-Guang, Tong Liu, Yan-Qing Qi, Bao-Quan Huang, Yun-Feng Wei, Tuan Yi, Wei-Min Gu e Li Xue. "Effects of Vertical Advection on Multimessenger Signatures of Black Hole Neutrino-dominated Accretion Flows in Compact Binary Coalescences". Astrophysical Journal 941, n. 2 (1 dicembre 2022): 156. http://dx.doi.org/10.3847/1538-4357/aca406.
Testo completoYu, Shenghua, Youjun Lu e C. Simon Jeffery. "Orbital evolution of neutron-star–white-dwarf binaries by Roche lobe overflow and gravitational wave radiation". Monthly Notices of the Royal Astronomical Society 503, n. 2 (5 marzo 2021): 2776–90. http://dx.doi.org/10.1093/mnras/stab626.
Testo completoMacLeod, Morgan, Kishalay De e Abraham Loeb. "Dusty, Self-obscured Transients from Stellar Coalescence". Astrophysical Journal 937, n. 2 (1 ottobre 2022): 96. http://dx.doi.org/10.3847/1538-4357/ac8c31.
Testo completoSpurzem, R., P. Berczik, I. Berentzen, D. Merritt, M. Preto e P. Amaro-Seoane. "Formation and Evolution of Black Holes in Galactic Nuclei and Star Clusters". Proceedings of the International Astronomical Union 3, S246 (settembre 2007): 346–50. http://dx.doi.org/10.1017/s1743921308015901.
Testo completoTesi sul tema "Coalescence compacte de binaire"
Andres, Nicolas. "Optimisation de la chaîne d'analyse MBTA et développement d'une méthode d'étalonnage de la réponse fréquentielle du détecteur d'onde gravitationnelle Virgo". Electronic Thesis or Diss., Chambéry, 2023. http://www.theses.fr/2023CHAMA029.
Testo completoThe LIGO Virgo collaboration marked the beginnings of gravitational astronomy by providing direct evidence of their existence in September 2015. The detection of gravitationnal wave coming from a binary black holes merger led to the physic's Nobel price. This field has since experienced a great growth, each discovery of which allows an advance in disciplines such as astrophysics, cosmology and fundamental physics. At the end of each observation period, the detectors are stopped and many aspects are improved. This work is part of the preparation phase between period O3 and O4 beginning in May 2024 to configure interferometers in their advanced states in order to optimize their sensitivities. Calibration then becomes crucial in order to accurately reconstruct the signal containing gravitational wave information, allowing detection and the production of scientific results such as the measurement of the Hubble constant, etc. An instrumentation work has been carried out, allowing an accurate and regular measurement of the time stamp (timing) of the readout sensing chain of the interferometer signal, which must be mastered better than 0.01 ms for the purpose of a joint analysis of the detectors network data.Many devices for the calibration of the interferometer rely on the reading of control signals by photodetectors whose frequency response has been assumed to be flat. In order to avoid any bias introduced in the reconstruction of the signal, a measurement method must be developed for a frequency calibration of each photo detector involved. Two methods are compared for use in the O5 period.In addition, the increasing sensitivity of the detectors means more detections. Collaboration analysis chains need to follow instrumental improvements by developing new tools to optimize real-time and off-ligne signal search. The MBTA Low Latency Analysis Chain is one of 4 collaboration analysis pipelines focusing on the search for compact binary coalescences by combining independent data analysis from all 3 detectors. It has many powerful noise rejection tools, but does not take into account any astrophysical information a priori. Through the accumulation of data in previous observation periods, the collaboration was able to establish more accurate mass distribution models for compact binary coalescence populations. During my thesis, a new tool was developed by the MBTA team using this new information, aimed at estimating the probability of origin of events (astrophysics or not) and at classifying the nature of the astrophysical source. This tool finally made it possible to restructure the global analysis chain by using it as the main parameter for classifying events according to their level of significance. The collaboration produces low-latency public alerts for multi-messenger astronomy, providing information related to detected signals common to the different analytical pipelines. Not knowing in advance the preferences of the different experiences partners of the LIGO Virgo collaboration to define the optimal parameters allowing multi-messenger detections, it was decided to test another method to implement similar astrophysical information in the MBTA analysis chain. A technique for including astrophysical information directly in the parameter defining the ranking by significance level of candidate events is presented. This method makes it possible to improve research by providing better discrimination between astrophysical and background noise events. By considering the observation period O3 this method makes it possible to increase the number of detection by 10% with MBTA , detections that have been confirmed by the other chains of analysis
MacLeod, Duncan. "Improving the sensitivity of searches for gravitational waves from compact binary coalescences". Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/50885/.
Testo completoRenvoizé, Vincent. "Hydrodynamique et évolution d'objets compacts : binaires serrées et naines blanches". Lyon, École normale supérieure (sciences), 2002. http://www.theses.fr/2002ENSL0221.
Testo completoGrover, Katherine L. "Physics and astrophysics with gravitational waves from compact binary coalescence in ground based interferometers". Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6410/.
Testo completoGermain, Vincent. "De l'étalonnage d'Advanced Virgo à la recherche d'ondes gravitationnelles émises par des coalescences de binaires compactes". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY101/document.
Testo completoThe era of gravitational astronomy began with the first detection of a gravitational wave on September 14, 2015, by the LIGO-Virgo collaboration. The first detections come from coalescences of black holes with masses of a few tens of solar masses. The European detector Advanced Virgo restarted in 2017 to participate in the next detections of gravitational waves and to locate the astrophysical sources.This thesis deals with the different stages of the gravitational waves detection process: from the calibration of the Advanced Virgo detector to low-latency analysis of the LIGO-Virgo interferometer network data. First, the objectives, method and results of the detector calibration are described. This step is crucial for understanding the sensitivity of the detector and for reconstructing the amplitude of the gravitational wave. A new algorithm, SilenteC, developed during the thesis is then detailed: its objective is to identify the sources of non-stationary noises that limit the sensitivity of the analysis. Some transient noises are non-linear and SilenteC tries to identify this type of contribution. Finally, low-latency MBTA analysis for the detection of gravitational wave signals from compact binary coalescences is described. In particular, emphasis is put on the study of vetos making it possible to distinguish the astrophysical signals to be selected and the transient noises to be rejected as efficiently as possible
Indik, Nathaniel [Verfasser]. "Optimal Template Placement for Searches of Gravitational Waves from Precessing Compact Binary Coalescences / Nathaniel Indik". Hannover : Gottfried Wilhelm Leibniz Universität, 2018. http://d-nb.info/1160378878/34.
Testo completoChan, Man Leong. "Optimization of electromagnetic follow up observations and localization of gravitational wave signals from compact binary coalescences". Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/31007/.
Testo completoMcKechan, David J. A. "On the use of higher order wave forms in the search for gravitational waves emitted by compact binary coalescences". Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54982/.
Testo completoCabero, Müller Miriam Anabel [Verfasser]. "Gravitational-wave astronomy with compact binary coalescences : from blip glitches to the black hole area increase law / Miriam Anabel Cabero Müller". Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1165251078/34.
Testo completoCabero, Müller Miriam [Verfasser]. "Gravitational-wave astronomy with compact binary coalescences : from blip glitches to the black hole area increase law / Miriam Anabel Cabero Müller". Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1165251078/34.
Testo completoLibri sul tema "Coalescence compacte de binaire"
Colpi, Monica, Piergiorgio Casella, Vittorio Gorini, Ugo Moschella e Andrea Possenti, a cura di. Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0.
Testo completoPhysics of relativistic objects in compact binaries: From birth to coalescence. Dordrecht: Springer, 2009.
Cerca il testo completoMaggiore, Michele. GWs from compact binaries. Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.003.0005.
Testo completoCasella, Piergiorgio, Andrea Possenti, Monica Colpi, Vittorio Gorini e Ugo Moschella. Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Springer Netherlands, 2014.
Cerca il testo completoCapitoli di libri sul tema "Coalescence compacte de binaire"
Pretorius, Frans. "Binary Black Hole Coalescence". In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 305–69. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_9.
Testo completoBulik, Tomasz. "The Coalescence Rates of Compact Object Binaries". In Gravitational Wave Astrophysics, 23–33. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10488-1_2.
Testo completoHeuvel, E. P. J. van den. "The Formation and Evolution of Relativistic Binaries". In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 125–98. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_4.
Testo completoIsrael, Gian Luca, e Simone Dall'Osso. "White Dwarfs in Ultrashort Binary Systems". In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 281–304. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_8.
Testo completoDamour, Thibault. "Binary Systems as Test-Beds of Gravity Theories". In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 1–41. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_1.
Testo completoKramer, Michael. "Exploiting Binary Pulsars as Laboratories of Gravity Theories". In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 43–75. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_2.
Testo completoStella, L. "Strong Gravitational Field Diagnostics in Binary Systems Containing a Compact Object". In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 265–80. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_7.
Testo completoColpi, Monica, e Bernadetta Devecchi. "Dynamical Formation and Evolution of Neutron Star and Black Hole Binaries in Globular Clusters". In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 199–243. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_5.
Testo completoLazzati, Davide, e Rosalba Perna. "Short Gamma Ray Bursts: Marking the Birth of Black Holes from Coalescing Compact Binaries". In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 245–63. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_6.
Testo completoD'Amico, Nichi, e Marta Burgay. "Perspective in the Search for Relativistic Pulsars". In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 77–123. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_3.
Testo completoAtti di convegni sul tema "Coalescence compacte de binaire"
Buonanno, Alessandra, Ye-Fei Yuan, Xiang-Dong Li e Dong Lai. "Binary Black Hole Coalescence". In ASTROPHYSICS OF COMPACT OBJECTS: International Conference on Astrophysics of Compact Objects. AIP, 2008. http://dx.doi.org/10.1063/1.2840417.
Testo completoCaudill, Sarah. "Techniques for gravitational-wave detection of compact binary coalescence". In 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018. http://dx.doi.org/10.23919/eusipco.2018.8553549.
Testo completoDEN BROECK, CHRIS VAN. "COMPACT BINARY COALESCENCE AND THE SCIENCE CASE FOR EINSTEIN TELESCOPE". In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0302.
Testo completoTakeda, Hiroki, Yuta Michimura, Kentaro Komori, Masaki Ando, Atsushi Nishizawa, Koji Nagano e Kazuhiro Hayama. "Polarization test of gravitational waves from compact binary coalescences". In Proceedings of the MG15 Meeting on General Relativity. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811258251_0247.
Testo completoMarion, F., Vicky Kologera e Marc van der Sluys. "Searches for Gravitational Waves from Compact Binary Coalescences with the LIGO and Virgo Detectors". In INTERNATIONAL CONFERENCE ON BINARIES: In celebration of Ron Webbink’s 65th Birthday. AIP, 2010. http://dx.doi.org/10.1063/1.3536398.
Testo completoVerma, Chetan, Amit Reza, Dilip Krishnaswamy, Sarah Caudill e Gurudatt Gaur. "Employing deep learning for detection of gravitational waves from compact binary coalescences". In INNOVATIONS IN COMPUTATIONAL AND COMPUTER TECHNIQUES: ICACCT-2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0108682.
Testo completoSasaoka, Seiya, Yilun Hou, Diego Sebastian Dominguez, Suyog Garg, Naoki Koyama, Yuto Omae, Kentaro Somiya e Hirotaka Takahashi. "Deep Learning for Detecting Gravitational Waves from Compact Binary Coalescences and Its Visualization by Grad-CAM". In 38th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.444.1498.
Testo completo