Letteratura scientifica selezionata sul tema "COLLABORATIVE FILTERING ALGORITHMS"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "COLLABORATIVE FILTERING ALGORITHMS".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "COLLABORATIVE FILTERING ALGORITHMS"
Ben Kharrat, Firas, Aymen Elkhleifi e Rim Faiz. "Improving Collaborative Filtering Algorithms". International Journal of Knowledge Society Research 7, n. 3 (luglio 2016): 99–118. http://dx.doi.org/10.4018/ijksr.2016070107.
Testo completoCacheda, Fidel, Víctor Carneiro, Diego Fernández e Vreixo Formoso. "Comparison of collaborative filtering algorithms". ACM Transactions on the Web 5, n. 1 (febbraio 2011): 1–33. http://dx.doi.org/10.1145/1921591.1921593.
Testo completoZhou, Li Juan, Ming Sheng Xu e Hai Jun Geng. "Improved Attack-Resistant Collaborative Filtering Algorithm". Key Engineering Materials 460-461 (gennaio 2011): 439–44. http://dx.doi.org/10.4028/www.scientific.net/kem.460-461.439.
Testo completoWu, Xinyi. "Comparison Between Collaborative Filtering and Content-Based Filtering". Highlights in Science, Engineering and Technology 16 (10 novembre 2022): 480–89. http://dx.doi.org/10.54097/hset.v16i.2627.
Testo completoJalili, Mahdi. "A Survey of Collaborative Filtering Recommender Algorithms and Their Evaluation Metrics". International Journal of System Modeling and Simulation 2, n. 2 (30 giugno 2017): 14. http://dx.doi.org/10.24178/ijsms.2017.2.2.14.
Testo completoZhang, Zhen, Taile Peng e Ke Shen. "Overview of Collaborative Filtering Recommendation Algorithms". IOP Conference Series: Earth and Environmental Science 440 (19 marzo 2020): 022063. http://dx.doi.org/10.1088/1755-1315/440/2/022063.
Testo completoJing, Hui. "Application of Improved K-Means Algorithm in Collaborative Recommendation System". Journal of Applied Mathematics 2022 (22 dicembre 2022): 1–10. http://dx.doi.org/10.1155/2022/2213173.
Testo completoJiang, Tong Qiang, e Wei Lu. "Improved Slope One Algorithm Based on Time Weight". Applied Mechanics and Materials 347-350 (agosto 2013): 2365–68. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.2365.
Testo completoLi, Xiaofeng, e Dong Li. "An Improved Collaborative Filtering Recommendation Algorithm and Recommendation Strategy". Mobile Information Systems 2019 (7 maggio 2019): 1–11. http://dx.doi.org/10.1155/2019/3560968.
Testo completoKourtiche, Ali, e Mohamed Merabet. "Collaborative Filtering Technical Comparison in Implicit Data". International Journal of Knowledge-Based Organizations 11, n. 4 (ottobre 2021): 1–24. http://dx.doi.org/10.4018/ijkbo.2021100101.
Testo completoTesi sul tema "COLLABORATIVE FILTERING ALGORITHMS"
Hansjons, Vegeborn Victor, e Hakim Rahmani. "Comparison and Improvement Of Collaborative Filtering Algorithms". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209468.
Testo completoRekommendationssystem är ett ämne som många datatekniker har forskat inom. Med dagens e-handel och Internetåtkomst, så försöker företag att maximera sina vinster genom att utnyttja diverse rekommendationsalgoritmer. En metodik som används i sådana system är Collaborative Filtering. Syftet med denna uppsats är att jämföra fyra algoritmer, alla baserade på Collaborati- ve Filtering, vilket är k-Nearest-Neighbour, Slope One, Single Value Decomposition och Average Least Square, i syfte att ta reda på vilken algoritm som producerar den bästa be- tygsättningen. Uppsatsen kommer även använda sig av två olika matematiska modeller, Aritmetisk Median och Viktad Aritmetisk Median, för att ta reda på om dom kan förbättra betygsättningen. Single Value Decomposition presterade bäst medan Average Least Square presterade sämst av de fyra algoritmerna. Däremot presterade Aritmetiska Median en aning bättre än Single Value Decomposition och Viktad Aritmetisk Median presterade sämst.
Anne, Patricia Anne. "Semantically and Contextually-Enhanced Collaborative Filtering Recommender Algorithms". Thesis, University of Ulster, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516289.
Testo completoCasey, Walker Evan. "Scalable Collaborative Filtering Recommendation Algorithms on Apache Spark". Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/cmc_theses/873.
Testo completoRault, Antoine. "User privacy in collaborative filtering systems". Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S019/document.
Testo completoRecommendation systems try to infer their users’ interests in order to suggest items relevant to them. These systems thus offer a valuable service to users in that they automatically filter non-relevant information, which avoids the nowadays common issue of information overload. This is why recommendation systems are now popular, if not pervasive in some domains such as the World Wide Web. However, an individual’s interests are personal and private data, such as one’s political or religious orientation. Therefore, recommendation systems gather private data and their widespread use calls for privacy-preserving mechanisms. In this thesis, we study the privacy of users’ interests in the family of recommendation systems called Collaborative Filtering (CF) ones. Our first contribution is Hide & Share, a novel privacy-preserving similarity mechanism for the decentralized computation of K-Nearest-Neighbor (KNN) graphs. It is a lightweight mechanism designed for decentralized (a.k.a. peer-to-peer) user-based CF systems, which rely on KNN graphs to provide recommendations. Our second contribution also applies to user-based CF systems, though it is independent of their architecture. This contribution is two-fold: first we evaluate the impact of an active Sybil attack on the privacy of a target user’s profile of interests, and second we propose a counter-measure. This counter-measure is 2-step, a novel similarity metric combining a good precision, in turn allowing for good recommendations,with high resilience to said Sybil attack
Strunjas, Svetlana. "Algorithms and Models for Collaborative Filtering from Large Information Corpora". University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1220001182.
Testo completoAlmosallam, Ibrahim Ahmad Shang Yi. "A new adaptive framework for collaborative filtering prediction". Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5630.
Testo completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 22, 2008) Includes bibliographical references.
Salam, Patrous Ziad, e Safir Najafi. "Evaluating Prediction Accuracy for Collaborative Filtering Algorithms in Recommender Systems". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186456.
Testo completoNARAYANASWAMY, SHRIRAM. "A CONCEPT-BASED FRAMEWORK AND ALGORITHMS FOR RECOMMENDER SYSTEMS". University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1186165016.
Testo completoSvebrant, Henrik, e John Svanberg. "A comparative study of the conventional item-based collaborative filtering and the Slope One algorithms for recommender systems". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186449.
Testo completoSafran, Mejdl Sultan. "EFFICIENT LEARNING-BASED RECOMMENDATION ALGORITHMS FOR TOP-N TASKS AND TOP-N WORKERS IN LARGE-SCALE CROWDSOURCING SYSTEMS". OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1511.
Testo completoLibri sul tema "COLLABORATIVE FILTERING ALGORITHMS"
Nadler, Anthony M. Popularizing News 2.0. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252040146.003.0005.
Testo completoCapitoli di libri sul tema "COLLABORATIVE FILTERING ALGORITHMS"
Nisgav, Aviv, e Boaz Patt-Shamir. "Improved Collaborative Filtering". In Algorithms and Computation, 425–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25591-5_44.
Testo completoChang, Edward Y. "Parallel Algorithms for Collaborative Filtering". In Algorithmic Aspects in Information and Management, 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02158-9_2.
Testo completoCunha, Tiago, Carlos Soares e André C. P. L. F. de Carvalho. "Selecting Collaborative Filtering Algorithms Using Metalearning". In Machine Learning and Knowledge Discovery in Databases, 393–409. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46227-1_25.
Testo completoKluver, Daniel, Michael D. Ekstrand e Joseph A. Konstan. "Rating-Based Collaborative Filtering: Algorithms and Evaluation". In Social Information Access, 344–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90092-6_10.
Testo completoPan, Lilin, e Jianfei Shao. "Review of Improved Collaborative Filtering Recommendation Algorithms". In Advances in Intelligent Systems and Computing, 21–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1843-7_3.
Testo completoCunha, Tiago, Carlos Soares e André C. P. L. F. de Carvalho. "Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers". In Discovery Science, 189–203. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67786-6_14.
Testo completoCai, Xianggao, Zhanpeng Xu, Guoming Lai, Chengwei Wu e Xiaola Lin. "GPU-Accelerated Restricted Boltzmann Machine for Collaborative Filtering". In Algorithms and Architectures for Parallel Processing, 303–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33078-0_22.
Testo completoVerhaegh, Wim F. J., Aukje E. M. van Duijnhoven, Pim Tuyls e Jan Korst. "Privacy Protection in Collaborative Filtering by Encrypted Computation". In Intelligent Algorithms in Ambient and Biomedical Computing, 169–84. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4995-1_11.
Testo completoAdán-Coello, Juan Manuel, e Carlos Miguel Tobar. "Using Collaborative Filtering Algorithms for Predicting Student Performance". In Electronic Government and the Information Systems Perspective, 206–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44159-7_15.
Testo completoPapagelis, Manos, Ioannis Rousidis, Dimitris Plexousakis e Elias Theoharopoulos. "Incremental Collaborative Filtering for Highly-Scalable Recommendation Algorithms". In Lecture Notes in Computer Science, 553–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11425274_57.
Testo completoAtti di convegni sul tema "COLLABORATIVE FILTERING ALGORITHMS"
Kharrat, Firas Ben, Aymen Elkhleifi e Rim Faiz. "Improving Collaborative Filtering Algorithms". In 2016 12th International Conference on Semantics, Knowledge and Grids (SKG). IEEE, 2016. http://dx.doi.org/10.1109/skg.2016.024.
Testo completoYaqiu Liu, Zhendi Wang e Man Li. "Ratio-based collaborative filtering algorithms". In 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics (ISSCAA). IEEE, 2008. http://dx.doi.org/10.1109/isscaa.2008.4776258.
Testo completoKleinberg, Jon, e Mark Sandler. "Convergent algorithms for collaborative filtering". In the 4th ACM conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/779928.779929.
Testo completoPatil, Vandana A., e Lata Ragha. "Comparing performance of collaborative filtering algorithms". In 2012 International Conference on Communication, Information & Computing Technology (ICCICT). IEEE, 2012. http://dx.doi.org/10.1109/iccict.2012.6398206.
Testo completoSarwar, Badrul, George Karypis, Joseph Konstan e John Reidl. "Item-based collaborative filtering recommendation algorithms". In the tenth international conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/371920.372071.
Testo completo"Comparative Study of Collaborative Filtering Algorithms". In International Conference on Knowledge Discovery and Information Retrieval. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0004104001320137.
Testo completoMatuszyk, Pawel, e Myra Spiliopoulou. "Predicting the Performance of Collaborative Filtering Algorithms". In the 4th International Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2611040.2611054.
Testo completo"Using Collaborative Filtering Algorithms as eLearning Tools". In 2009 42nd Hawaii International Conference on System Sciences. IEEE, 2009. http://dx.doi.org/10.1109/hicss.2009.492.
Testo completoLiu, Dong. "A Study on Collaborative Filtering Recommendation Algorithms". In 2018 IEEE 4th International Conference on Computer and Communications (ICCC). IEEE, 2018. http://dx.doi.org/10.1109/compcomm.2018.8780979.
Testo completoCöster, Rickard, e Martin Svensson. "Inverted file search algorithms for collaborative filtering". In the 25th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/564376.564420.
Testo completo