Letteratura scientifica selezionata sul tema "Computation speedup"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Computation speedup".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Computation speedup"
Zhang, Guiming, e Jin Xu. "Multi-GPU-Parallel and Tile-Based Kernel Density Estimation for Large-Scale Spatial Point Pattern Analysis". ISPRS International Journal of Geo-Information 12, n. 2 (18 gennaio 2023): 31. http://dx.doi.org/10.3390/ijgi12020031.
Testo completoGao, Wen Hua, Li Qin Duan, Wei Zhou e Pei Xin Ye. "Information-Based Complexity of Integration in the Randomized and Quantum Computation Model". Advanced Materials Research 403-408 (novembre 2011): 367–71. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.367.
Testo completoMORENO MAZA, MARC, e YUZHEN XIE. "BALANCED DENSE POLYNOMIAL MULTIPLICATION ON MULTI-CORES". International Journal of Foundations of Computer Science 22, n. 05 (agosto 2011): 1035–55. http://dx.doi.org/10.1142/s0129054111008556.
Testo completoXu, Zhiqiang, Yiming Wang, Naidi Sun, Zhengying Li, Song Hu e Quan Liu. "Parallel Computing for Quantitative Blood Flow Imaging in Photoacoustic Microscopy". Sensors 19, n. 18 (16 settembre 2019): 4000. http://dx.doi.org/10.3390/s19184000.
Testo completoZhang, Zhigang, Songfeng Lu, Jie Sun e Qing Zhou. "The Constant Speedup Mechanism on Adiabatic Quantum Computation". Journal of Computational and Theoretical Nanoscience 13, n. 10 (1 ottobre 2016): 7262–65. http://dx.doi.org/10.1166/jctn.2016.5997.
Testo completoAKL, SELIM G. "INHERENTLY PARALLEL GEOMETRIC COMPUTATIONS". Parallel Processing Letters 16, n. 01 (marzo 2006): 19–37. http://dx.doi.org/10.1142/s0129626406002447.
Testo completoSu, Huayou, Kaifang Zhang e Songzhu Mei. "On the Transformation Optimization for Stencil Computation". Electronics 11, n. 1 (23 dicembre 2021): 38. http://dx.doi.org/10.3390/electronics11010038.
Testo completoWani, Mohsin Altaf, e Manzoor Ahmad. "Statically Optimal Binary Search Tree Computation Using Non-Serial Polyadic Dynamic Programming on GPU's". International Journal of Grid and High Performance Computing 11, n. 1 (gennaio 2019): 49–70. http://dx.doi.org/10.4018/ijghpc.2019010104.
Testo completoYONG, XIE, e HSU WEN-JING. "ALIGNED MULTITHREADED COMPUTATIONS AND THEIR SCHEDULING WITH PERFORMANCE GUARANTEES". Parallel Processing Letters 13, n. 03 (settembre 2003): 353–64. http://dx.doi.org/10.1142/s0129626403001331.
Testo completoAl-Neama, Mohammed W., Naglaa M. Reda e Fayed F. M. Ghaleb. "An Improved Distance Matrix Computation Algorithm for Multicore Clusters". BioMed Research International 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/406178.
Testo completoTesi sul tema "Computation speedup"
Terner, Olof, e Hedbjörk Villhelm Urpi. "Quantum Computational Speedup For The Minesweeper Problem". Thesis, Uppsala universitet, Teoretisk fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325945.
Testo completoMezher, Rawad. "Randomness for quantum information processing". Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS244.pdf.
Testo completoThis thesis is focused on the generation and understanding of particular kinds of quantum randomness. Randomness is useful for many tasks in physics and information processing, from randomized benchmarking , to black hole physics , as well demonstrating a so-called quantum speedup , and many other applications. On the one hand we explore how to generate a particular form of random evolution known as a t-design. On the other we show how this can also give instances for quantum speedup - where classical computers cannot simulate the randomness efficiently. We also show that this is still possible in noisy realistic settings. More specifically, this thesis is centered around three main topics. The first of these being the generation of epsilon-approximate unitary t-designs. In this direction, we first show that non-adaptive, fixed measurements on a graph state composed of poly(n,t,log(1/epsilon)) qubits, and with a regular structure (that of a brickwork state) effectively give rise to a random unitary ensemble which is a epsilon-approximate t-design. This work is presented in Chapter 3. Before this work, it was known that non-adaptive fixed XY measurements on a graph state give rise to unitary t-designs , however the graph states used there were of complicated structure and were therefore not natural candidates for measurement based quantum computing (MBQC), and the circuits to make them were complicated. The novelty in our work is showing that t-designs can be generated by fixed, non-adaptive measurements on graph states whose underlying graphs are regular 2D lattices. These graph states are universal resources for MBQC. Therefore, our result allows the natural integration of unitary t-designs, which provide a notion of quantum pseudorandomness which is very useful in quantum algorithms, into quantum algorithms running in MBQC. Moreover, in the circuit picture this construction for t-designs may be viewed as a constant depth quantum circuit, albeit with a polynomial number of ancillas. We then provide new constructions of epsilon-approximate unitary t-designs both in the circuit model and in MBQC which are based on a relaxation of technical requirements in previous constructions. These constructions are found in Chapters 4 and 5
Pandya, Ajay Kirit. "Performance of multithreaded computations on high-speed networks". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ32212.pdf.
Testo completoChitty, Darren M. "Improving the computational speed of genetic programming". Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686812.
Testo completoYousefi, Mojir Kayran. "A Computational Model for Optimal Dimensional Speed on New High-Speed Lines". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-37230.
Testo completoBrown, Kieron David. "Computational analysis of low speed axial flow rotors". Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389158.
Testo completoZhu, Yu Ping. "Computational study of shock control at transonic speed". Thesis, Cranfield University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323930.
Testo completoYildirim, Erkan. "Computational study of high speed blade-vortex interaction". Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10994.
Testo completoRohrseitz, Nicola. "The computation of linear speed for visual flight control in Drosophila melanogaster /". Zürich : ETH, 2009. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18165.
Testo completoLord, Steven John. "Computational and experimental study of hydraulic shock". Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265850.
Testo completoLibri sul tema "Computation speedup"
Roberts, Leonard. Computation of high speed transport aerodynamics. Stanford, Calif: Stanford University, Dept. of Aeronautics and Astronautics, 1991.
Cerca il testo completoAbolhassani, Jamshid S. Topology and grid adaption for high-speed flow computations. Hampton, Va: Langley Research Center, 1989.
Cerca il testo completoTauber, Michael E. A review of high-speed, convective, heat-transfer computation methods. Moffett Field, Calif: Ames Research Center, 1989.
Cerca il testo completoRostand, Philippe. Algebraic turbulence models for the computation of two-dimensional high speed flows using unstructured grids. Hampton, Va: ICASE, 1988.
Cerca il testo completoGentzsch, Wolfgang. High speed and large scale scientific computing. Amsterdam: IOS Press, 2009.
Cerca il testo completoGentzsch, Wolfgang. High speed and large scale scientific computing. Amsterdam: IOS Press, 2009.
Cerca il testo completoThareja, R. R. Applications of an adaptive unstructured solution algorithm to the analysis of high speed flows. Washington, D. C: American Institute of Aeronautics and Astronautics, 1990.
Cerca il testo completoCoirier, William J. Efficient real gas Navier-Stokes computations of high speed flows using an LU scheme. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Cerca il testo completoTaki, Mustafa. Computation of the aerodynamic performance of high-lift aerofoil systems at low-speed and transonic flow conditions. Manchester: UMIST, 1997.
Cerca il testo completoGroth, Clinton P. T. TVD flux-difference split methods for high-speed thermochemical nonequilibrium flows with strong shocks. [Toronto, Ont.]: University of Toronto, Graduate Dept. of Aerospace Science and Engineering, 1993.
Cerca il testo completoCapitoli di libri sul tema "Computation speedup"
Hines, Peter. "Quantum Speedup and Categorical Distributivity". In Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky, 122–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38164-5_9.
Testo completoDemaine, Erik D., Mohammad Taghi Hajiaghayi e Dimitrios M. Thilikos. "Exponential Speedup of Fixed-Parameter Algorithms on K 3,3-Minor-Free or K 5-Minor-Free Graphs". In Algorithms and Computation, 262–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36136-7_24.
Testo completoKosheleva, Olga, e Vladik Kreinovich. "Relativistic Effects Can Be Used to Achieve a Universal Square-Root (Or Even Faster) Computation Speedup". In Fields of Logic and Computation III, 179–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48006-6_13.
Testo completoFrid, Yelena, e Dan Gusfield. "Speedup of RNA Pseudoknotted Secondary Structure Recurrence Computation with the Four-Russians Method". In Combinatorial Optimization and Applications, 176–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31770-5_16.
Testo completoChinazzo, André, Christian De Schryver, Katharina Zweig e Norbert Wehn. "Increasing the Sampling Efficiency for the Link Assessment Problem". In Lecture Notes in Computer Science, 39–56. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21534-6_3.
Testo completoSchwarz, Reinhard. "Speedup limits for tightly-coupled parallel computations". In Lecture Notes in Computer Science, 242–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-60042-6_17.
Testo completoRossow, C. C. "Flow Computation at All Speeds". In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 358–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39604-8_45.
Testo completoJiang, Bo-nan. "High-Speed Compressible Flows". In Scientific Computation, 303–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03740-9_13.
Testo completoAkl, Selim G. "Unconventional Wisdom: Superlinear Speedup and Inherently Parallel Computations". In From Parallel to Emergent Computing, 347–66. Boca Raton, Florida : CRC Press, [2019] | Produced in celebration of the 25th anniversary of the International Journal of Parallel, Emergent, and Distributed Systems.: CRC Press, 2019. http://dx.doi.org/10.1201/9781315167084-16.
Testo completoJiang, Bo-nan. "Low-Speed Compressible Viscous Flows". In Scientific Computation, 259–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03740-9_11.
Testo completoAtti di convegni sul tema "Computation speedup"
Lawrens, Fernando, M. Rachmat Sule e Afnimar. "Parallel computation for speedup the computation time of direct determination of common-reflection-surface (CRS) attribute". In Proceedings of the 12th SEGJ International Symposium, Tokyo, Japan, 18-20 November 2015. Society of Exploration Geophysicists and Society of Exploration Geophysicists of Japan, 2015. http://dx.doi.org/10.1190/segj122015-069.
Testo completoLiu, Xiao, e Lei Xu. "CUDA Based Parallel Computation for Gauss Elimination Method". In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78479.
Testo completoShen, Shuheng, Linli Xu, Jingchang Liu, Xianfeng Liang e Yifei Cheng. "Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/637.
Testo completovon Bremen, Hubertus F., e Michael J. Bonilla. "Computation of Lyapunov Characteristic Exponents Using Parallel Computing". In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71757.
Testo completoHarvey, Nicholas, Robert Luke, James M. Keller e Derek Anderson. "Speedup of fuzzy logic through stream processing on Graphics Processing Units". In 2008 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2008. http://dx.doi.org/10.1109/cec.2008.4631314.
Testo completoRathish Kumar, B. V., T. Yamaguchi, H. Liu e R. Himeno. "Parallel Computation of LV Hemodynamics". In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/fed-24965.
Testo completoFraigniaud, Pierre, Ami Paz e Sergio Rajsbaum. "A Speedup Theorem for Asynchronous Computation with Applications to Consensus and Approximate Agreement". In PODC '22: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3519270.3538422.
Testo completoSumi, Kazuki, Yoshifumi Okamoto, Koji Fujiwara e Hidenori Sasaki. "Speedup of Flux Waveforms Control Using Deep Neural Network for Single Sheet Tester". In 2022 IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC). IEEE, 2022. http://dx.doi.org/10.1109/cefc55061.2022.9940766.
Testo completoZhao, Yong, e Chin Hoe Tai. "Parallel Computation of Unsteady Incompressible Viscous Flows Using an Unstructured Multigrid Method". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39388.
Testo completoHermanns, Miguel. "An order 102 speedup in the computation of the steady-state thermal response of geothermal heat exchangers". In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2018 (ICCMSE 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5079205.
Testo completoRapporti di organizzazioni sul tema "Computation speedup"
Duff, C. R. W. Data compression and computation speed. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/315270.
Testo completoAlberse, John Robert, Adam Edward Biewer, John W. Grove e Roseanne Marie Cheng. Computational Study of High Speed Jets with xRage. Office of Scientific and Technical Information (OSTI), agosto 2019. http://dx.doi.org/10.2172/1557195.
Testo completoBiewer, Adam Edward, e John Robert Alberse. Computational Study of High Speed Jets with xRage. Office of Scientific and Technical Information (OSTI), agosto 2019. http://dx.doi.org/10.2172/1558033.
Testo completoJiang, Minyee. Joint High Speed Sealift (JHSS) Appendage Resistance Computation Fluid Dynamics (CFD) Analysis. Fort Belvoir, VA: Defense Technical Information Center, dicembre 2009. http://dx.doi.org/10.21236/ada514547.
Testo completoHafez, Mohamed. Symposium on Computational Fluid Dynamics and High Speed Flows. Fort Belvoir, VA: Defense Technical Information Center, giugno 2001. http://dx.doi.org/10.21236/ada399066.
Testo completoHaussling, H. J., R. W. Miller e R. M. Coleman. Computation of High-Speed Turbulent Flow about a Ship Model with a Transom Stern. Fort Belvoir, VA: Defense Technical Information Center, settembre 1997. http://dx.doi.org/10.21236/ada330142.
Testo completoEdwards, Jack R. Computational Simulation of High-Speed Projectiles in Air, Water, and Sand. Fort Belvoir, VA: Defense Technical Information Center, dicembre 2007. http://dx.doi.org/10.21236/ada474825.
Testo completoWenren, Yonghu, Luke Allen e Robert Haehnel. SAGE-PEDD user manual. Engineer Research and Development Center (U.S.), agosto 2022. http://dx.doi.org/10.21079/11681/44960.
Testo completoPerumalla, Kalyan S., Maksudul Alam e Devin A. White. Computational Speed and Matching Quality using an Upper Bound on the Normalized Mutual Information. Test accounts, maggio 2017. http://dx.doi.org/10.2172/1360069.
Testo completoTumin, Anatoli. Theoretical and Computational Studies of Stability, Transition and Flow Control in High-Speed Flows. Fort Belvoir, VA: Defense Technical Information Center, febbraio 2011. http://dx.doi.org/10.21236/ada547191.
Testo completo