Segui questo link per vedere altri tipi di pubblicazioni sul tema: Computational fluid dynamics.

Articoli di riviste sul tema "Computational fluid dynamics"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Computational fluid dynamics".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Thabet, Senan, and Thabit H. Thabit. "Computational Fluid Dynamics: Science of the Future." International Journal of Research and Engineering 5, no. 6 (2018): 430–33. http://dx.doi.org/10.21276/ijre.2018.5.6.2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

KAWAMURA, Tetuya, and Hideo TAKAMI. "Computational Fluid Dynamics." Tetsu-to-Hagane 75, no. 11 (1989): 1981–90. http://dx.doi.org/10.2355/tetsutohagane1955.75.11_1981.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Birchall, D. "Computational fluid dynamics." British Journal of Radiology 82, special_issue_1 (January 2009): S1—S2. http://dx.doi.org/10.1259/bjr/26554028.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Lin, Ching-long, Merryn H. Tawhai, Geoffrey Mclennan, and Eric A. Hoffman. "Computational fluid dynamics." IEEE Engineering in Medicine and Biology Magazine 28, no. 3 (May 2009): 25–33. http://dx.doi.org/10.1109/memb.2009.932480.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Wrobel, L. C. "Computational fluid dynamics." Engineering Analysis with Boundary Elements 9, no. 2 (January 1992): 192. http://dx.doi.org/10.1016/0955-7997(92)90070-n.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Pericleous, K. A. "Computational fluid dynamics." International Journal of Heat and Mass Transfer 32, no. 1 (January 1989): 197–98. http://dx.doi.org/10.1016/0017-9310(89)90105-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Von Wendt, J. "Computational fluid dynamics." Journal of Wind Engineering and Industrial Aerodynamics 40, no. 2 (June 1992): 223. http://dx.doi.org/10.1016/0167-6105(92)90368-k.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Lax, Peter D. "Computational Fluid Dynamics." Journal of Scientific Computing 31, no. 1-2 (October 25, 2006): 185–93. http://dx.doi.org/10.1007/s10915-006-9104-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Pitarma, R. A., J. E. Ramos, M. E. Ferreira, and M. G. Carvalho. "Computational fluid dynamics." Management of Environmental Quality: An International Journal 15, no. 2 (April 2004): 102–10. http://dx.doi.org/10.1108/14777830410523053.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Leschziner, M. A. "Computational fluid dynamics." International Journal of Heat and Fluid Flow 11, no. 1 (March 1990): 82–83. http://dx.doi.org/10.1016/0142-727x(90)90031-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Raza, Md Shamim, Nitesh Kumar, and Sourav Poddar. "Combustor Characteristics under Dynamic Condition during Fuel – Air Mixingusing Computational Fluid Dynamics." Journal of Advances in Mechanical Engineering and Science 1, no. 1 (August 8, 2015): 20–33. http://dx.doi.org/10.18831/james.in/2015011003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Bhardwaj, Shalini, and Yashwant Buke. "Computational Fluid Dynamics Analysis of A Turbocharger System." International Journal of Scientific Research 3, no. 5 (June 1, 2012): 161–64. http://dx.doi.org/10.15373/22778179/may2014/49.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Lin, C. T., J. K. Kuo, and T. H. Yen. "Quantum Fluid Dynamics and Quantum Computational Fluid Dynamics." Journal of Computational and Theoretical Nanoscience 6, no. 5 (May 1, 2009): 1090–108. http://dx.doi.org/10.1166/jctn.2009.1149.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Drikakis, Dimitris, Michael Frank, and Gavin Tabor. "Multiscale Computational Fluid Dynamics." Energies 12, no. 17 (August 25, 2019): 3272. http://dx.doi.org/10.3390/en12173272.

Testo completo
Abstract (sommario):
Computational Fluid Dynamics (CFD) has numerous applications in the field of energy research, in modelling the basic physics of combustion, multiphase flow and heat transfer; and in the simulation of mechanical devices such as turbines, wind wave and tidal devices, and other devices for energy generation. With the constant increase in available computing power, the fidelity and accuracy of CFD simulations have constantly improved, and the technique is now an integral part of research and development. In the past few years, the development of multiscale methods has emerged as a topic of intensive research. The variable scales may be associated with scales of turbulence, or other physical processes which operate across a range of different scales, and often lead to spatial and temporal scales crossing the boundaries of continuum and molecular mechanics. In this paper, we present a short review of multiscale CFD frameworks with potential applications to energy problems.
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Norman, Michael L., David A. Clarke, and James M. Stone. "Computational Astrophysical Fluid Dynamics." Computers in Physics 5, no. 2 (1991): 138. http://dx.doi.org/10.1063/1.4822976.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Bell, John B., Alejandro L. Garcia, and Sarah A. Williams. "Computational fluctuating fluid dynamics." ESAIM: Mathematical Modelling and Numerical Analysis 44, no. 5 (August 26, 2010): 1085–105. http://dx.doi.org/10.1051/m2an/2010053.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Schierholz, W. F., and N. Gilbert. "Computational Fluid Dynamics (CFD)." Chemie Ingenieur Technik 75, no. 10 (October 15, 2003): 1412–14. http://dx.doi.org/10.1002/cite.200303306.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

C., Mohan Raj. "Analysis of Various Automotive Mufflers: Computational Fluid Dynamics Approach." Revista Gestão Inovação e Tecnologias 11, no. 4 (July 10, 2021): 1339–48. http://dx.doi.org/10.47059/revistageintec.v11i4.2191.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Madhu, S., P. Murali, R. Ramasai, M. Venkat Vardhan, and K. Bhanu Prakash. "Computational Fluid Dynamics (CFD) Analysis of A Go-Kart." International Journal of Research Publication and Reviews 5, no. 11 (November 2024): 3418–24. http://dx.doi.org/10.55248/gengpi.5.1124.3262.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Kim, Youngho, and Sangho Yun. "Fluid Dynamics in an Anatomically Correct Total Cavopulmonary Connection : Flow Visualizations and Computational Fluid Dynamics(Cardiovascular Mechanics)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 57–58. http://dx.doi.org/10.1299/jsmeapbio.2004.1.57.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Schneider, Kai, and Oleg V. Vasilyev. "Wavelet Methods in Computational Fluid Dynamics." Annual Review of Fluid Mechanics 42, no. 1 (January 2010): 473–503. http://dx.doi.org/10.1146/annurev-fluid-121108-145637.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Teodosiu, Cătălin, Viorel Ilie, and Raluca Teodosiu. "Condensation Model for Application of Computational Fluid Dynamics in Buildings." International Journal of Materials, Mechanics and Manufacturing 3, no. 2 (2015): 129–33. http://dx.doi.org/10.7763/ijmmm.2015.v3.181.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Subaschandar, N. "Flow Mixing Optimisation inside a Manifold using Computational Fluid Dynamics." Journal of Advanced Research in Applied Mechanics & Computational Fluid Dynamics 5, no. 3&4 (January 23, 2019): 7–14. http://dx.doi.org/10.24321/2349.7661.201802.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Murti, Vishav, and Esar Ahmad. "Wind Effects on Bridge Deck: A Computational Fluid Dynamics Study." International Journal of Science and Research (IJSR) 12, no. 9 (September 5, 2023): 1056–59. http://dx.doi.org/10.21275/sr23905111754.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Aksenov, Andrey A. "FlowVision: Industrial computational fluid dynamics." Computer Research and Modeling 9, no. 1 (February 2017): 5–20. http://dx.doi.org/10.20537/2076-7633-2017-9-5-20.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Barman, Purna Chandra. "Introduction to Computational Fluid Dynamics." International Journal of Information Science and Computing 3, no. 2 (2016): 117. http://dx.doi.org/10.5958/2454-9533.2016.00014.4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Mehta, Unmeel B. "Credible Computational Fluid Dynamics Simulations." AIAA Journal 36, no. 5 (May 1998): 665–67. http://dx.doi.org/10.2514/2.431.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

SATOMURA, Takehiko. "Computational Fluid Dynamics in Meteorology." Wind Engineers, JAWE 1994, no. 60 (1994): 41–55. http://dx.doi.org/10.5359/jawe.1994.60_41.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Chen, Goong, Qingang Xiong, Phillip J. Morris, Eric G. Paterson, Alexey Sergeev, and Yi-Ching Wang. "OpenFOAM for Computational Fluid Dynamics." Notices of the American Mathematical Society 61, no. 4 (April 1, 2014): 354. http://dx.doi.org/10.1090/noti1095.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Wiwatanapataphee, Benchawan, Yonghong Wu, I. Ming Tang, and Shaoyong Lai. "Fluid Dynamics and Computational Engineering." Mathematical Problems in Engineering 2014 (2014): 1–3. http://dx.doi.org/10.1155/2014/649058.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Wendt, John, Marc Bourzutschky, A. John Mallinckrodt, and Susan McKay. "Computational Fluid Dynamics: An Introduction." Computers in Physics 7, no. 5 (1993): 542. http://dx.doi.org/10.1063/1.4823215.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Fisher, E. H., and N. Rhodes. "Uncertainty in Computational Fluid Dynamics." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 209, no. 2 (May 1995): 155–58. http://dx.doi.org/10.1243/pime_proc_1995_209_026_02.

Testo completo
Abstract (sommario):
The Fifth Joint Engineering and Physical Sciences Research Council and Institution of Mechanical Engineers Expert Meeting was held in Bournemouth on 27-29 November 1994. The Fifth Joint Engineering and Physical Sciences Research Council and Institution of Mechanical Engineers Expert Meeting was held in Bournemouth on 27–29 November 1994.
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Fisher, E. H., and N. Rhodes. "Uncertainty in Computational Fluid Dynamics." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 210, no. 1 (January 1996): 91–94. http://dx.doi.org/10.1243/pime_proc_1996_210_173_02.

Testo completo
Abstract (sommario):
The Annual EPSRC/IMechE Expert Meeting brought together some 44 experts to consider sources of uncertainty in computational fluid dynamics (CFD). Presentations and discussions covered modelling, numerical solution techniques, boundary conditions, evaluation protocols and QA (quality assurance) procedures. The principal conclusions to emerge were: (a) the need for additional collaborative validation studies; (b) the desirability of introducing appropriate QA procedures, possibly based on the CFD Community Club initiative; (c) the need for additional postgraduate training, possibly based on the IGDS principle; (d) the value of continuing work in modelling and error estimation techniques for numerical schemes.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Lomax, H., TH Pulliam, DW Zingg, and TA Kowalewski. "Fundamentals of Computational Fluid Dynamics." Applied Mechanics Reviews 55, no. 4 (2002): B61. http://dx.doi.org/10.1115/1.1483340.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Paul, P. "Computational Fluid Dynamics in Combustion." Defence Science Journal 60, no. 6 (November 20, 2010): 577–82. http://dx.doi.org/10.14429/dsj.60.600.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Li, Sheng S. "Book review: Computational Fluid Dynamics." Canadian Journal of Civil Engineering 29, no. 6 (December 1, 2002): 919–20. http://dx.doi.org/10.1139/l02-090.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Vassberg, John. "Expectations for computational fluid dynamics." International Journal of Computational Fluid Dynamics 19, no. 8 (November 2005): 549–58. http://dx.doi.org/10.1080/10618560500508375.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Ueki, Heihachi, Toshiaki Yokoi, Hiroko Fujii, Atsushi Kunimatsu, Kazuhiro Hiwada, and Tsunemi Takahashi. "Computational Fluid Dynamics for Entertainment." Proceedings of The Computational Mechanics Conference 2002.15 (2002): 525–26. http://dx.doi.org/10.1299/jsmecmd.2002.15.525.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Bhasker, C. "Computational techniques for fluid dynamics." Finite Elements in Analysis and Design 9, no. 1 (April 1991): 87–88. http://dx.doi.org/10.1016/0168-874x(91)90021-p.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Bar-Yoseph, Pinhas Z. "Computational fluid dynamics review 1995." International Journal of Multiphase Flow 23, no. 5 (September 1997): 1003–4. http://dx.doi.org/10.1016/s0301-9322(97)80002-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Mehta, Unmeel B. "Credible computational fluid dynamics simulations." AIAA Journal 36 (January 1998): 665–67. http://dx.doi.org/10.2514/3.13878.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Dhotre, Mahesh T., Nandkishor Krishnarao Nere, Sreepriya Vedantam, and Mandar Tabib. "Advances in Computational Fluid Dynamics." International Journal of Chemical Engineering 2013 (2013): 1–2. http://dx.doi.org/10.1155/2013/917373.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

NAKAMURA, Tadao, and Hisaki DAIGUJI. "Computational Fluid Dynamics in Supercomputing." Journal of the Society of Mechanical Engineers 94, no. 866 (1991): 40–45. http://dx.doi.org/10.1299/jsmemag.94.866_40.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Thornber, Ben. "Computational fluid dynamics for engineers." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 227, no. 12 (November 11, 2013): 2002. http://dx.doi.org/10.1177/0954410013478712.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Ferziger, Joel H., Milovan Peric, and Anthony Leonard. "Computational Methods for Fluid Dynamics." Physics Today 50, no. 3 (March 1997): 80–84. http://dx.doi.org/10.1063/1.881751.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Fletcher, D. F. "Computational techniques for fluid dynamics." Computer Physics Communications 70, no. 1 (May 1992): 221. http://dx.doi.org/10.1016/0010-4655(92)90103-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Ranade, Vivek V., and Vishnu Pareek. "Guest editorial: computational fluid dynamics." Asia-Pacific Journal of Chemical Engineering 3, no. 2 (March 2008): 95–96. http://dx.doi.org/10.1002/apj.130.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

TAKAHIRA, Hiroyuki. "Computational Fluid Dynamics for Cavitaiton Bubble Dynamics." Proceedings of the Fluids engineering conference 2004 (2004): 4. http://dx.doi.org/10.1299/jsmefed.2004.4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Li, Lei, Carlos F. Lange, and Yongsheng Ma. "Association of design and computational fluid dynamics simulation intent in flow control product optimization." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232, no. 13 (March 14, 2017): 2309–22. http://dx.doi.org/10.1177/0954405417697352.

Testo completo
Abstract (sommario):
Computational fluid dynamics has been extensively used for fluid flow simulation and thus guiding the flow control device design. However, computational fluid dynamics simulation requires explicit geometry input and complicated solver setup, which is a barrier in case of the cyclic computer-aided design/computational fluid dynamics integrated design process. Tedious human interventions are inevitable to make up the gap. To fix this issue, this work proposed a theoretical framework where the computational fluid dynamics solver setup can be intelligently assisted by the simulation intent capture. Two feature concepts, the fluid physics feature and the dynamic physics feature, have been defined to support the simulation intent capture. A prototype has been developed for the computer-aided design/computational fluid dynamics integrated design implementation without the need of human intervention, where the design intent and computational fluid dynamics simulation intent are associated seamlessly. An outflow control device used in the steam-assisted gravity drainage process is studied using this prototype, and the target performance of the device is effectively optimized.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Rodríguez-Vázquez, Martin, Iván Hernández-Pérez, Jesus Xamán, Yvonne Chávez, Miguel Gijón-Rivera, and Juan M. Belman-Flores. "Coupling building energy simulation and computational fluid dynamics: An overview." Journal of Building Physics 44, no. 2 (February 2, 2020): 137–80. http://dx.doi.org/10.1177/1744259120901840.

Testo completo
Abstract (sommario):
Building energy simulations coupled with computational fluid dynamics tools have emerged, recently, as an accurate and effective tool to improve the estimation of energy requirements and thermal comfort in buildings. Building modelers and researchers usually implement this coupling in the boundary conditions of both tools (e.g. surface temperature, ambient temperature, and conductive and convective fluxes). This work reviews how the building energy simulation–computational fluid dynamics coupling has evolved since its first implementation to the present day. Moreover, this article also summarizes and discusses the research studies in which the building energy simulation–computational fluid dynamics coupling has been used to analyze building systems, building components, and building urban configurations. Implementing a building energy simulation–computational fluid dynamics coupling brings a series of benefits when compared with the conventional building energy simulation methodology, a building energy simulation–computational fluid dynamics coupling provides an improvement that ranges between 10% and 50% for estimating the building energy requirements. Moreover, the computation time to implement computational fluid dynamics with information obtained from the building energy simulation could be reduced by as well.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!