Letteratura scientifica selezionata sul tema "Computer software. Software engineering. Machine learning"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Computer software. Software engineering. Machine learning".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Computer software. Software engineering. Machine learning"
Hussain*, Mandi Akif, Revoori Veeharika Reddy, Kedharnath Nagella e Vidya S. "Software Defect Estimation using Machine Learning Algorithms". International Journal of Recent Technology and Engineering 10, n. 1 (30 maggio 2021): 204–8. http://dx.doi.org/10.35940/ijrte.a5898.0510121.
Testo completoBera, Debjyoti, Mathijs Schuts, Jozef Hooman e Ivan Kurtev. "Reverse engineering models of software interfaces". Computer Science and Information Systems 18, n. 3 (2021): 657–86. http://dx.doi.org/10.2298/csis200131013b.
Testo completoChung, Chih-Ko, e Pi-Chung Wang. "Version-Wide Software Birthmark via Machine Learning". IEEE Access 9 (2021): 110811–25. http://dx.doi.org/10.1109/access.2021.3103186.
Testo completoAl Sghaier, Hiba. "RESEARCH TRENDS IN SOFTWARE ENGINEERING FIELD: A LITERATURE REVIEW". International Journal of Engineering Technologies and Management Research 7, n. 6 (15 giugno 2020): 58–65. http://dx.doi.org/10.29121/ijetmr.v2020.i7.6.694.
Testo completoAl Sghaier, Hiba. "RESEARCH TRENDS IN SOFTWARE ENGINEERING FIELD: A LITERATURE REVIEW". International Journal of Engineering Technologies and Management Research 7, n. 6 (15 giugno 2020): 58–65. http://dx.doi.org/10.29121/ijetmr.v7.i6.2020.694.
Testo completoSaputri, Theresia Ratih Dewi, e Seok-Won Lee. "Software Analysis Method for Assessing Software Sustainability". International Journal of Software Engineering and Knowledge Engineering 30, n. 01 (gennaio 2020): 67–95. http://dx.doi.org/10.1142/s0218194020500047.
Testo completoBAILIN, SIDNEY C., ROBERT H. GATTIS e WALT TRUSZKOWSKI. "A LEARNING-BASED SOFTWARE ENGINEERING ENVIRONMENT FOR REUSING DESIGN KNOWLEDGE". International Journal of Software Engineering and Knowledge Engineering 01, n. 04 (dicembre 1991): 351–71. http://dx.doi.org/10.1142/s0218194091000251.
Testo completoSiewruk, Grzegorz, e Wojciech Mazurczyk. "Context-Aware Software Vulnerability Classification Using Machine Learning". IEEE Access 9 (2021): 88852–67. http://dx.doi.org/10.1109/access.2021.3075385.
Testo completoFirdaus Zainal Abidin, Ahmad, Mohd Faaizie Darmawan, Mohd Zamri Osman, Shahid Anwar, Shahreen Kasim, Arda Yunianta e Tole Sutikno. "Adaboost-multilayer perceptron to predict the student’s performance in software engineering". Bulletin of Electrical Engineering and Informatics 8, n. 4 (1 dicembre 2019): 1556–62. http://dx.doi.org/10.11591/eei.v8i4.1432.
Testo completoAZAR, DANIELLE. "A GENETIC ALGORITHM FOR IMPROVING ACCURACY OF SOFTWARE QUALITY PREDICTIVE MODELS: A SEARCH-BASED SOFTWARE ENGINEERING APPROACH". International Journal of Computational Intelligence and Applications 09, n. 02 (giugno 2010): 125–36. http://dx.doi.org/10.1142/s1469026810002811.
Testo completoTesi sul tema "Computer software. Software engineering. Machine learning"
Cao, Bingfei. "Augmenting the software testing workflow with machine learning". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119752.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 67-68).
This work presents the ML Software Tester, a system for augmenting software testing processes with machine learning. It allows users to plug in a Git repository of the choice, specify a few features and methods specific to that project, and create a full machine learning pipeline. This pipeline will generate software test result predictions that the user can easily integrate with their existing testing processes. To do so, a novel test result collection system was built to collect the necessary data on which the prediction models could be trained. Test data was collected for Flask, a well-known Python open-source project. This data was then fed through SVDFeature, a matrix prediction model, to generate new test result predictions. Several methods for the test result prediction procedure were evaluated to demonstrate various methods of using the system.
by Bingfei Cao.
M. Eng.
Brun, Yuriy 1981. "Software fault identification via dynamic analysis and machine learning". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17939.
Testo completoIncludes bibliographical references (p. 65-67).
I propose a technique that identifies program properties that may indicate errors. The technique generates machine learning models of run-time program properties known to expose faults, and applies these models to program properties of user-written code to classify and rank properties that may lead the user to errors. I evaluate an implementation of the technique, the Fault Invariant Classifier, that demonstrates the efficacy of the error finding technique. The implementation uses dynamic invariant detection to generate program properties. It uses support vector machine and decision tree learning tools to classify those properties. Given a set of properties produced by the program analysis, some of which are indicative of errors, the technique selects a subset of properties that are most likely to reveal an error. The experimental evaluation over 941,000 lines of code, showed that a user must examine only the 2.2 highest-ranked properties for C programs and 1.7 for Java programs to find a fault-revealing property. The technique increases the relevance (the concentration of properties that reveal errors) by a factor of 50 on average for C programs, and 4.8 for Java programs.
by Yuriy Brun.
M.Eng.
Bayana, Sreeram. "Learning to deal with COTS (commercial off the shelf)". Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3859.
Testo completoTitle from document title page. Document formatted into pages; contains vii, 66 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 61-66).
Liljeson, Mattias, e Alexander Mohlin. "Software defect prediction using machine learning on test and source code metrics". Thesis, Blekinge Tekniska Högskola, Institutionen för kreativa teknologier, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4162.
Testo completoChi, Yuan. "Machine learning techniques for high dimensional data". Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2033319/.
Testo completoRichmond, James Howard. "Bayesian Logistic Regression Models for Software Fault Localization". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1326658577.
Testo completoKaloskampis, Ioannis. "Recognition of complex human activities in multimedia streams using machine learning and computer vision". Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/59377/.
Testo completoHossain, Md Billal. "QoS-Aware Intelligent Routing For Software Defined Networking". University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1595086618729923.
Testo completoPercival, Graham Keith. "Physical modelling meets machine learning : performing music with a virtual string ensemble". Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4253/.
Testo completoOsgood, Thomas J. "Semantic labelling of road scenes using supervised and unsupervised machine learning with lidar-stereo sensor fusion". Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/60439/.
Testo completoLibri sul tema "Computer software. Software engineering. Machine learning"
Daniele, Gunetti, a cura di. Inductive logic programming: From machine learning to software engineering. Cambridge, Mass: MIT Press, 1996.
Cerca il testo completoEuropean Working Session on Learning (1991 Porto, Portugal). Machine learning--EWSL-91: Proceedings. Berlin: Springer-Verlag, 1991.
Cerca il testo completoEuropean Working Session on Learning (1991 Porto, Portugal). Machine learning--EWSL-91: European Working Session on Learning, Porto, Portugal, March 6-8, 1991 : proceedings. Berlin: Springer-Verlag, 1991.
Cerca il testo completoS, Chen Peter P., Wong Leah Y e International Conference on Conceptual Modeling (25th : 2006 : Tucson, Ariz.), a cura di. Active conceptual modeling of learning: Next generation learning-base system development. Berlin: Springer, 2007.
Cerca il testo completoComputational trust models and machine learning. Boca Raton: Taylor & Francis, 2014.
Cerca il testo completoALT 2004 (2004 Padua, Italy). Algorithmic learning theory: 15th international conference, ALT 2004, Padova, Italy, October 2-5, 2004 : proceedings. Berlin: Springer, 2004.
Cerca il testo completoP, O'Hare G. M., a cura di. Engineering societies in the agents world VII: 7th international workshop, ESAW 2006, Dublin, Ireland, September 6-8, 2006 : revised selected and invited papers. Berlin: Springer, 2007.
Cerca il testo completoInternational, Conference on Artificial Neural Networks and Genetic Algorithms (2007 Warsaw Poland). Adaptive and natural computing algorithms: 8th international conference, ICANNGA 2007, Warsaw, Poland, April 11-14, 2007 : proceedings. Berlin: Springer, 2007.
Cerca il testo completoDavid, Hutchison. Engineering Societies in the Agents World IX: 9th International Workshop, ESAW 2008, Saint-Etienne, France, September 24-26, 2008, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Cerca il testo completoStützle, Thomas. Learning and Intelligent Optimization: Third International Conference, LION 3, Trento, Italy, January 14-18, 2009. Selected Papers. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.
Cerca il testo completoCapitoli di libri sul tema "Computer software. Software engineering. Machine learning"
Kodratoff, Y. "Ten Years of Advances in Machine Learning". In Computer Systems and Software Engineering, 231–61. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3506-5_9.
Testo completoNakajima, Shin. "Generalized Oracle for Testing Machine Learning Computer Programs". In Software Engineering and Formal Methods, 174–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74781-1_13.
Testo completoSubbiah, Uma, Muthu Ramachandran e Zaigham Mahmood. "Software Engineering Framework for Software Defect Management Using Machine Learning Techniques with Azure". In Computer Communications and Networks, 155–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33624-0_7.
Testo completoDiako, Doffou Jerome, Odilon Yapo M. Achiepo e Edoete Patrice Mensah. "Analysis of Software Vulnerabilities Using Machine Learning Techniques". In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 30–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41593-8_3.
Testo completoAlloghani, Mohamed, Dhiya Al-Jumeily, Thar Baker, Abir Hussain, Jamila Mustafina e Ahmed J. Aljaaf. "Applications of Machine Learning Techniques for Software Engineering Learning and Early Prediction of Students’ Performance". In Communications in Computer and Information Science, 246–58. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-3441-2_19.
Testo completoCruz, Henry, Tatiana Gualotuña, María Pinillos, Diego Marcillo, Santiago Jácome e Efraín R. Fonseca C. "Machine Learning and Color Treatment for the Forest Fire and Smoke Detection Systems and Algorithms, a Recent Literature Review". In Artificial Intelligence, Computer and Software Engineering Advances, 109–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68080-0_8.
Testo completoAmamra, Abdelfattah, Chamseddine Talhi, Jean-Marc Robert e Martin Hamiche. "Enhancing Smartphone Malware Detection Performance by Applying Machine Learning Hybrid Classifiers". In Computer Applications for Software Engineering, Disaster Recovery, and Business Continuity, 131–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35267-6_17.
Testo completoStouky, Ali, Btissam Jaoujane, Rachid Daoudi e Habiba Chaoui. "Improving Software Automation Testing Using Jenkins, and Machine Learning Under Big Data". In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 87–96. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98752-1_10.
Testo completoRivest, Ronald L., e Werner Remmele. "Machine Learning". In Angewandte Informatik und Software / Applied Computer Science and Software, 186–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-93501-5_16.
Testo completoZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag et al. "Predictive Techniques in Software Engineering". In Encyclopedia of Machine Learning, 782–89. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_661.
Testo completoAtti di convegni sul tema "Computer software. Software engineering. Machine learning"
Yalciner, Burcu, e Merve Ozdes. "Software Defect Estimation Using Machine Learning Algorithms". In 2019 4th International Conference on Computer Science and Engineering (UBMK). IEEE, 2019. http://dx.doi.org/10.1109/ubmk.2019.8907149.
Testo completoNakajima, Shin, e Hai Ngoc Bui. "Dataset Coverage for Testing Machine Learning Computer Programs". In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2016. http://dx.doi.org/10.1109/apsec.2016.049.
Testo completoGensheng, Hu, e Liang Dong. "Multi-output Support Vector Machine Regression and Its Online Learning". In 2008 International Conference on Computer Science and Software Engineering. IEEE, 2008. http://dx.doi.org/10.1109/csse.2008.1024.
Testo completoBoriratrit, Sarunyoo, Sirapat Chiewchanwattana, Khamron Sunat, Pakarat Musikawan e Punyaphol Horata. "Improvement flower pollination extreme learning machine based on meta-learning". In 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2016. http://dx.doi.org/10.1109/jcsse.2016.7748871.
Testo completoManeerat, Nakarin, e Pomsiri Muenchaisri. "Bad-smell prediction from software design model using machine learning techniques". In 2011 International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2011. http://dx.doi.org/10.1109/jcsse.2011.5930143.
Testo completoKyaw, Aye Thandar, May Zin Oo e Chit Su Khin. "Machine-Learning Based DDOS Attack Classifier in Software Defined Network". In 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2020. http://dx.doi.org/10.1109/ecti-con49241.2020.9158230.
Testo completoBoriratrit, Sarunyoo, Sirapat Chiewchanwattana, Khamron Sunat, Pakarat Musikawan e Punyaphol Horata. "Harmonic extreme learning machine for data clustering". In 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2016. http://dx.doi.org/10.1109/jcsse.2016.7748872.
Testo completoAugustijn, Ellen-Wien, Shaheen A. Abdulkareem, Mohammed Hikmat Sadiq e Ali A. Albabawat. "Machine Learning to Derive Complex Behaviour in Agent-Based Modellzing". In 2020 International Conference on Computer Science and Software Engineering (CSASE). IEEE, 2020. http://dx.doi.org/10.1109/csase48920.2020.9142117.
Testo completoZhu, Qiuxi, Xiaodong Li e Weijie Mao. "Image super-resolution representation via image patches based on extreme learning machine". In 2013 International Conference on Software Engineering and Computer Science. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/icsecs-13.2013.61.
Testo completoVinitnantharat, Napas, Narit Inchan, Thatthai Sakkumjorn, Kitsada Doungjitjaroen e Chukiat Worasucheep. "Quantitative Trading Machine Learning Using Differential Evolution Algorithm". In 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2019. http://dx.doi.org/10.1109/jcsse.2019.8864226.
Testo completoRapporti di organizzazioni sul tema "Computer software. Software engineering. Machine learning"
Chichikin, V. A. The distance learning course "System software", direction podgotov 09.03.01 "Informatics and computer engineering". OFERNIO, giugno 2018. http://dx.doi.org/10.12731/ofernio.2018.23684.
Testo completo