Tesi sul tema "Computer software. Software engineering. Machine learning"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Computer software. Software engineering. Machine learning".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Cao, Bingfei. "Augmenting the software testing workflow with machine learning". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119752.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 67-68).
This work presents the ML Software Tester, a system for augmenting software testing processes with machine learning. It allows users to plug in a Git repository of the choice, specify a few features and methods specific to that project, and create a full machine learning pipeline. This pipeline will generate software test result predictions that the user can easily integrate with their existing testing processes. To do so, a novel test result collection system was built to collect the necessary data on which the prediction models could be trained. Test data was collected for Flask, a well-known Python open-source project. This data was then fed through SVDFeature, a matrix prediction model, to generate new test result predictions. Several methods for the test result prediction procedure were evaluated to demonstrate various methods of using the system.
by Bingfei Cao.
M. Eng.
Brun, Yuriy 1981. "Software fault identification via dynamic analysis and machine learning". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17939.
Testo completoIncludes bibliographical references (p. 65-67).
I propose a technique that identifies program properties that may indicate errors. The technique generates machine learning models of run-time program properties known to expose faults, and applies these models to program properties of user-written code to classify and rank properties that may lead the user to errors. I evaluate an implementation of the technique, the Fault Invariant Classifier, that demonstrates the efficacy of the error finding technique. The implementation uses dynamic invariant detection to generate program properties. It uses support vector machine and decision tree learning tools to classify those properties. Given a set of properties produced by the program analysis, some of which are indicative of errors, the technique selects a subset of properties that are most likely to reveal an error. The experimental evaluation over 941,000 lines of code, showed that a user must examine only the 2.2 highest-ranked properties for C programs and 1.7 for Java programs to find a fault-revealing property. The technique increases the relevance (the concentration of properties that reveal errors) by a factor of 50 on average for C programs, and 4.8 for Java programs.
by Yuriy Brun.
M.Eng.
Bayana, Sreeram. "Learning to deal with COTS (commercial off the shelf)". Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3859.
Testo completoTitle from document title page. Document formatted into pages; contains vii, 66 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 61-66).
Liljeson, Mattias, e Alexander Mohlin. "Software defect prediction using machine learning on test and source code metrics". Thesis, Blekinge Tekniska Högskola, Institutionen för kreativa teknologier, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4162.
Testo completoChi, Yuan. "Machine learning techniques for high dimensional data". Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2033319/.
Testo completoRichmond, James Howard. "Bayesian Logistic Regression Models for Software Fault Localization". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1326658577.
Testo completoKaloskampis, Ioannis. "Recognition of complex human activities in multimedia streams using machine learning and computer vision". Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/59377/.
Testo completoHossain, Md Billal. "QoS-Aware Intelligent Routing For Software Defined Networking". University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1595086618729923.
Testo completoPercival, Graham Keith. "Physical modelling meets machine learning : performing music with a virtual string ensemble". Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4253/.
Testo completoOsgood, Thomas J. "Semantic labelling of road scenes using supervised and unsupervised machine learning with lidar-stereo sensor fusion". Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/60439/.
Testo completoGrills, Blake E. "Automatic Identification and Analysis of Commented Out Code". Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1587646144001317.
Testo completoShahdad, Mir Abubakr. "Engineering innovation (TRIZ based computer aided innovation)". Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/3317.
Testo completoEwö, Christian. "A machine learning approach in financial markets". Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik och datavetenskap, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-5571.
Testo completoRobeson, Aaron. "Airwaves: A Broadcasting Web Application Supplemented by a Neural Network Transcription Model". Ohio University Honors Tutorial College / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors155603038153628.
Testo completoArtchounin, Daniel. "Tuning of machine learning algorithms for automatic bug assignment". Thesis, Linköpings universitet, Programvara och system, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139230.
Testo completoLe, Khanh Duc. "A Study of Face Embedding in Face Recognition". DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/1989.
Testo completoFahlén, Erik. "Androidapplikation för digitalisering av formulär : Minimering av inlärningstid, kostnad och felsannolikhet". Thesis, Mittuniversitetet, Avdelningen för informationssystem och -teknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35623.
Testo completoDenna studie genomfördes genom att skapa en fungerande androidapplikation som använder sig av en anpassad objektigenkänning för att skanna och digitalisera en serie av kryssruteformulär exempelvis för att rätta flervalsfrågor eller sammanställa enkäter i ett kalkylark. Syftet med undersökningen var att se vilka datauppsättningar och hårdvara med maskininlärningsbiblioteket TensorFlow som var billigast, mest prisvärd, tillräcklig tillförlitlig och snabbast. En datauppsättning av ifyllda exempelformulär med klassificerade kryssrutor skapades och användes i inlärningsprocessen. Modellen som användes för objektigenkänningen blev Single Shot MultiBox Detector, version MobileNet, för att denna kan känna igen flera objekt i samma bild samt att den inte har lika höga hårdvarukrav vilket gör den anpassad för mobiltelefoner. Inlärningsprocessen utfördes i Google Clouds Machine Learning Engine med olika bildupplösningar och molnkonfiguration. Efter inlärningsprocessen på molnet konverterades den färdiga TensorFlow- modellen till en TensorFlow Lite-modell som används i mobiltelefoner. TensorFlow Lite-modellen användes i kompileringen av androidapplikationen för att objektigenkänningen skulle fungera. Androidapplikationen fungerade och kunde känna igen alla inmatningar i kryssruteformuläret. Olika bildupplösningar och molnkonfigurationer under inlärningsprocessen gav olika resultat när det gäller vilken som var snabbast eller billigast. I slutändan drogs slutsatsen att Googles hårdvaruuppsättning STANDARD_1 var 20% snabbare än BASIC som var 91% billigare och mest prisvärd med denna datauppsättning.
Hsu, Samantha. "CLEAVER: Classification of Everyday Activities Via Ensemble Recognizers". DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1960.
Testo completoGokyer, Gokhan. "Identifying Architectural Concerns From Non-functional Requirements Using Support Vector Machine". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609964/index.pdf.
Testo completoarchitectural concerns"
in an automated way. This method uses Natural Language Processing techniques to fragment the plain NFR texts under the supervision of domain experts. The contribution of this approach lies in continuously applying ML techniques against previously discovered &ldquo
NFR - architectural concerns&rdquo
associations to improve the intelligence of repositories for requirements engineering. The study illustrates a charted roadmap and demonstrates the automated requirements engineering toolset for this roadmap. It also validates the approach and effectiveness of the toolset on the snapshot of a real-life project.
Ekström, Hagevall Adam, e Carl Wikström. "Increasing Reproducibility Through Provenance, Transparency and Reusability in a Cloud-Native Application for Collaborative Machine Learning". Thesis, Uppsala universitet, Avdelningen för datorteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-435349.
Testo completoWaqas, Muhammad. "A simulation-based approach to test the performance of large-scale real time software systems". Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20133.
Testo completoSalem, Tawfiq. "Learning to Map the Visual and Auditory World". UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/86.
Testo completoFrança, André Luiz Pereira de. "Estudo, desenvolvimento e implementação de algoritmos de aprendizagem de máquina, em software e hardware, para detecção de intrusão de rede: uma análise de eficiência energética". Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1166.
Testo completoO constante aumento na velocidade da rede, o número de ataques e a necessidade de eficiência energética estão fazendo com que a segurança de rede baseada em software chegue ao seu limite. Um tipo comum de ameaça são os ataques do tipo probing, nos quais um atacante procura vulnerabilidades a partir do envio de pacotes de sondagem a uma máquina-alvo. Este trabalho apresenta o estudo, o desenvolvimento e a implementação de um algoritmo de extração de características dos pacotes da rede em hardware e de três classificadores de aprendizagem de máquina (Árvore de Decisão, Naive Bayes e k-vizinhos mais próximos), em software e hardware, para a detecção de ataques do tipo probing. O trabalho apresenta, ainda resultados detalhados de acurácia de classificação, taxa de transferência e consumo de energia para cada implementação.
The increasing network speeds, number of attacks, and need for energy efficiency are pushing software-based network security to its limits. A common kind of threat is probing attacks, in which an attacker tries to find vulnerabilities by sending a series of probe packets to a target machine. This work presents the study, development, and implementation of a network packets feature extraction algorithm in hardware and three machine learning classifiers (Decision Tree, Naive Bayes, and k-nearest neighbors), in software and hardware, for the detection of probing attacks. The work also presents detailed results of classification accuracy, throughput, and energy consumption for each implementation.
Håkansson, Fredrik, e Carl-Johan Larsson. "User-Based Predictive Caching of Streaming Media". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151008.
Testo completoThis thesis is written as a joint thesis between two students from different universities. This means the exact same thesis is published at two universities (LiU and KTH) but with different style templates. The other report has identification number: TRITA-EECS-EX-2018:403
Farhat, Md Tanzin. "An Artificial Neural Network based Security Approach of Signal Verification in Cognitive Radio Network". University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo153511563131623.
Testo completoBessinger, Zachary. "An Automatic Framework for Embryonic Localization Using Edges in a Scale Space". TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1262.
Testo completoPartin, Michael. "Scalable, Pluggable, and Fault Tolerant Multi-Modal Situational Awareness Data Stream Management Systems". Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1567073723628721.
Testo completoPradhan, Shameer Kumar. "Investigation of Event-Prediction in Time-Series Data : How to organize and process time-series data for event prediction?" Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-19416.
Testo completoSantiago, Dionny. "A Model-Based AI-Driven Test Generation System". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3878.
Testo completovan, Schaik Sebastiaan Johannes. "A framework for processing correlated probabilistic data". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:91aa418d-536e-472d-9089-39bef5f62e62.
Testo completoVatandoust, Arman. "Machine Learning for Software Bug Categorization". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-395253.
Testo completoKhan, Mohammed Salman. "A Topic Modeling approach for Code Clone Detection". UNF Digital Commons, 2019. https://digitalcommons.unf.edu/etd/874.
Testo completoHickman, Björn, e Victor Holmqvist. "Predict future software defects through machine learning". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301864.
Testo completoRapportens mål var att undersöka potentiella effekter av att predicera mjukvarudefekter i ett mjukvaruprojekt. Detta genomfördes med hjälp av maskininlärning. Vidare undersöker studien vilka särdrag hos en kodbas som är av intresse för att genomföra dessa prediktioner. De undersökta särdrag som användes för att träna modellerna var av både teknisk såväl som organisatorisk karaktär. Modellerna som användes var Random forest, logistisk regression och naive Bayes. Data hämtades från ett open source git-repository, VSCode, där korrekta klassificeringar av rapporterade defekter hämtades från GitHub-Issues. Rapportens resultat ger indikationer på att både tekniska och organisatoriska särdrag är av relevans. Samtliga tre modeller påvisade liknande resultat. Vidare kan modellernas resultat visa stöd för att användas som ett komplementärt verktyg vid projektledning av mjukvaruprojekt. Närmare bestämt stöd vid riskplanering, riskbedömning och vid resursallokering. Vidare skulle fortsatta studier inom detta område vara av intresse för att bekräfta denna studies slutsatser.
Watson, Cody. "Deep Learning In Software Engineering". W&M ScholarWorks, 2020. https://scholarworks.wm.edu/etd/1616444371.
Testo completoMartin, Andrew Philip. "Machine-assisted theorem-proving for software engineering". Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:728d3cee-1dfe-4186-a49f-52b33cbc6551.
Testo completoHusseini, Orabi Ahmed. "Multi-Modal Technology for User Interface Analysis including Mental State Detection and Eye Tracking Analysis". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36451.
Testo completoJonsson, Nicklas. "Ways to use Machine Learning approaches for software development". Thesis, Umeå universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-152812.
Testo completoSharma, Oliver. "Detecting worm mutations using machine learning". Thesis, University of Glasgow, 2008. http://theses.gla.ac.uk/469/.
Testo completoPhadke, Amit Ashok. "Predicting open-source software quality using statistical and machine learning techniques". Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-11092004-105801.
Testo completoForsberg, Fredrik, e Gonzalez Pierre Alvarez. "Unsupervised Machine Learning: An Investigation of Clustering Algorithms on a Small Dataset". Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16300.
Testo completoMayo, Quentin R. "Detection of Generalizable Clone Security Coding Bugs Using Graphs and Learning Algorithms". Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404548/.
Testo completoKanneganti, Alekhya. "Using Ensemble Machine Learning Methods in Estimating Software Development Effort". Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20691.
Testo completoKasianenko, Stanislav. "Predicting Software Defectiveness by Mining Software Repositories". Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-78729.
Testo completoZam, Anton. "Evaluating Distributed Machine Learning using IoT Devices". Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42388.
Testo completoInternet of things is growing every year with new devices being added all the time. Although some of the devices are continuously in use a large amount of them are mostly idle and sitting on untapped processing power that could be used to compute machine learning computations. There currently exist a lot of different methods to combine the processing power of multiple devices to compute machine learning task these are often called distributed machine learning methods. The main focus of this thesis is to evaluate these distributed machine learning methods to see if they could be implemented on IoT devices and if so, measure how efficient and scalable these methods are. The method chosen for implementation was called “MultiWorkerMirrorStrategy” and this method was evaluated by comparing the training time, training accuracy and evaluation accuracy of 2,3 and 4 Raspberry pi:s with a nondistributed machine learning method with 1 Raspberry pi. The results showed that although the computational power increased with every added device the training time increased while the rest of the measurements stayed the same. After the results were analyzed and discussed the conclusion of this were that the overhead added for communicating between devices were to high resulting in this method being very inefficient and wouldn’t scale without some sort of optimization being added.
Lloyd, Katherine L. "Machine learning stratification for oncology patient survival". Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/107703/.
Testo completoBakhshi, Taimur. "User-centric traffic engineering in software defined networks". Thesis, University of Plymouth, 2017. http://hdl.handle.net/10026.1/8202.
Testo completoNiu, Fei. "Learning-based Software Testing using Symbolic Constraint Solving Methods". Licentiate thesis, KTH, Teoretisk datalogi, TCS, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-41932.
Testo completoQC 20111012
Allamanis, Miltiadis. "Learning natural coding conventions". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28791.
Testo completoAndersson, Robin. "CAN-bus Multi-mixed IDS : A combinatory approach for intrusion detection in the controller area network of personal vehicles". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43450.
Testo completoAndersson, Robin. "Combining Anomaly- and Signaturebased Algorithms for IntrusionDetection in CAN-bus : A suggested approach for building precise and adaptiveintrusion detection systems to controller area networks". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43450.
Testo completo