Articoli di riviste sul tema "Computer software. Software engineering. Machine learning"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Computer software. Software engineering. Machine learning".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Hussain*, Mandi Akif, Revoori Veeharika Reddy, Kedharnath Nagella e Vidya S. "Software Defect Estimation using Machine Learning Algorithms". International Journal of Recent Technology and Engineering 10, n. 1 (30 maggio 2021): 204–8. http://dx.doi.org/10.35940/ijrte.a5898.0510121.
Testo completoBera, Debjyoti, Mathijs Schuts, Jozef Hooman e Ivan Kurtev. "Reverse engineering models of software interfaces". Computer Science and Information Systems 18, n. 3 (2021): 657–86. http://dx.doi.org/10.2298/csis200131013b.
Testo completoChung, Chih-Ko, e Pi-Chung Wang. "Version-Wide Software Birthmark via Machine Learning". IEEE Access 9 (2021): 110811–25. http://dx.doi.org/10.1109/access.2021.3103186.
Testo completoAl Sghaier, Hiba. "RESEARCH TRENDS IN SOFTWARE ENGINEERING FIELD: A LITERATURE REVIEW". International Journal of Engineering Technologies and Management Research 7, n. 6 (15 giugno 2020): 58–65. http://dx.doi.org/10.29121/ijetmr.v2020.i7.6.694.
Testo completoAl Sghaier, Hiba. "RESEARCH TRENDS IN SOFTWARE ENGINEERING FIELD: A LITERATURE REVIEW". International Journal of Engineering Technologies and Management Research 7, n. 6 (15 giugno 2020): 58–65. http://dx.doi.org/10.29121/ijetmr.v7.i6.2020.694.
Testo completoSaputri, Theresia Ratih Dewi, e Seok-Won Lee. "Software Analysis Method for Assessing Software Sustainability". International Journal of Software Engineering and Knowledge Engineering 30, n. 01 (gennaio 2020): 67–95. http://dx.doi.org/10.1142/s0218194020500047.
Testo completoBAILIN, SIDNEY C., ROBERT H. GATTIS e WALT TRUSZKOWSKI. "A LEARNING-BASED SOFTWARE ENGINEERING ENVIRONMENT FOR REUSING DESIGN KNOWLEDGE". International Journal of Software Engineering and Knowledge Engineering 01, n. 04 (dicembre 1991): 351–71. http://dx.doi.org/10.1142/s0218194091000251.
Testo completoSiewruk, Grzegorz, e Wojciech Mazurczyk. "Context-Aware Software Vulnerability Classification Using Machine Learning". IEEE Access 9 (2021): 88852–67. http://dx.doi.org/10.1109/access.2021.3075385.
Testo completoFirdaus Zainal Abidin, Ahmad, Mohd Faaizie Darmawan, Mohd Zamri Osman, Shahid Anwar, Shahreen Kasim, Arda Yunianta e Tole Sutikno. "Adaboost-multilayer perceptron to predict the student’s performance in software engineering". Bulletin of Electrical Engineering and Informatics 8, n. 4 (1 dicembre 2019): 1556–62. http://dx.doi.org/10.11591/eei.v8i4.1432.
Testo completoAZAR, DANIELLE. "A GENETIC ALGORITHM FOR IMPROVING ACCURACY OF SOFTWARE QUALITY PREDICTIVE MODELS: A SEARCH-BASED SOFTWARE ENGINEERING APPROACH". International Journal of Computational Intelligence and Applications 09, n. 02 (giugno 2010): 125–36. http://dx.doi.org/10.1142/s1469026810002811.
Testo completoMedeiros, Nadia, Naghmeh Ivaki, Pedro Costa e Marco Vieira. "Vulnerable Code Detection Using Software Metrics and Machine Learning". IEEE Access 8 (2020): 219174–98. http://dx.doi.org/10.1109/access.2020.3041181.
Testo completoDe Carvalho, Halcyon Davys Pereira, Roberta Fagundes e Wylliams Santos. "Extreme Learning Machine Applied to Software Development Effort Estimation". IEEE Access 9 (2021): 92676–87. http://dx.doi.org/10.1109/access.2021.3091313.
Testo completoGanapathy, Apoorva, e Taposh Kumar Neogy. "Artificial Intelligence Price Emulator: A Study on Cryptocurrency". Global Disclosure of Economics and Business 6, n. 2 (31 dicembre 2017): 115–22. http://dx.doi.org/10.18034/gdeb.v6i2.558.
Testo completoPandey, Sushant Kumar, Ravi Bhushan Mishra e Anil Kumar Tripathi. "Machine learning based methods for software fault prediction: A survey". Expert Systems with Applications 172 (giugno 2021): 114595. http://dx.doi.org/10.1016/j.eswa.2021.114595.
Testo completoRodríguez-Gracia, Diego, José A. Piedra-Fernández, Luis Iribarne, Javier Criado, Rosa Ayala, Joaquín Alonso-Montesinos e Capobianco-Uriarte Maria de las Mercedes. "Microservices and Machine Learning Algorithms for Adaptive Green Buildings". Sustainability 11, n. 16 (9 agosto 2019): 4320. http://dx.doi.org/10.3390/su11164320.
Testo completoZheng, Wei, Yutong Bai e Haoxuan Che. "A computer-assisted instructional method based on machine learning in software testing class". Computer Applications in Engineering Education 26, n. 5 (28 giugno 2018): 1150–58. http://dx.doi.org/10.1002/cae.21962.
Testo completoMahdi, Mohammed Najah, Mohd Hazli Mohamed Zabil, Abdul Rahim Ahmad, Roslan Ismail, Yunus Yusoff, Lim Kok Cheng, Muhammad Sufyian Bin Mohd Azmi, Hayder Natiq e Hushalini Happala Naidu. "Software Project Management Using Machine Learning Technique—A Review". Applied Sciences 11, n. 11 (2 giugno 2021): 5183. http://dx.doi.org/10.3390/app11115183.
Testo completoPerlovsky, Leonid, e Gary Kuvich. "Machine Learning and Cognitive Algorithms for Engineering Applications". International Journal of Cognitive Informatics and Natural Intelligence 7, n. 4 (ottobre 2013): 64–82. http://dx.doi.org/10.4018/ijcini.2013100104.
Testo completoGirard, Simon R., Vincent Legault, Guy Bois e Jean-François Boland. "Avionics Graphics Hardware Performance Prediction with Machine Learning". Scientific Programming 2019 (3 giugno 2019): 1–15. http://dx.doi.org/10.1155/2019/9195845.
Testo completoRadliński, Łukasz. "Predicting Aggregated User Satisfaction in Software Projects". Foundations of Computing and Decision Sciences 43, n. 4 (1 dicembre 2018): 335–57. http://dx.doi.org/10.1515/fcds-2018-0017.
Testo completoTiwari, Tanya, Tanuj Tiwari e Sanjay Tiwari. "How Artificial Intelligence, Machine Learning and Deep Learning are Radically Different?" International Journal of Advanced Research in Computer Science and Software Engineering 8, n. 2 (6 marzo 2018): 1. http://dx.doi.org/10.23956/ijarcsse.v8i2.569.
Testo completoNAKKRASAE, SATHIT, e PERAPHON SOPHATSATHIT. "AN RPCL-BASED INDEXING APPROACH FOR SOFTWARE COMPONENT CLASSIFICATION". International Journal of Software Engineering and Knowledge Engineering 14, n. 05 (ottobre 2004): 497–518. http://dx.doi.org/10.1142/s0218194004001774.
Testo completoSheneamer, Abdullah M. "An Automatic Advisor for Refactoring Software Clones Based on Machine Learning". IEEE Access 8 (2020): 124978–88. http://dx.doi.org/10.1109/access.2020.3006178.
Testo completoLo, Sin Kit, Qinghua Lu, Chen Wang, Hye-Young Paik e Liming Zhu. "A Systematic Literature Review on Federated Machine Learning". ACM Computing Surveys 54, n. 5 (giugno 2021): 1–39. http://dx.doi.org/10.1145/3450288.
Testo completoCândido, Jeanderson, Maurício Aniche e Arie van Deursen. "Log-based software monitoring: a systematic mapping study". PeerJ Computer Science 7 (6 maggio 2021): e489. http://dx.doi.org/10.7717/peerj-cs.489.
Testo completoAkimova, Elena N., Alexander Yu Bersenev, Artem A. Deikov, Konstantin S. Kobylkin, Anton V. Konygin, Ilya P. Mezentsev e Vladimir E. Misilov. "A Survey on Software Defect Prediction Using Deep Learning". Mathematics 9, n. 11 (24 maggio 2021): 1180. http://dx.doi.org/10.3390/math9111180.
Testo completoTwala, Bhekisipho. "Predicting Software Faults in Large Space Systems using Machine Learning Techniques". Defence Science Journal 61, n. 4 (28 luglio 2011): 306–16. http://dx.doi.org/10.14429/dsj.61.1088.
Testo completoBailin, Sidney, Scott Henderson e Walt Truszkowski. "Application of machine learning to the organization of institutional software repositories". Telematics and Informatics 10, n. 3 (giugno 1993): 283–99. http://dx.doi.org/10.1016/0736-5853(93)90031-x.
Testo completoSabir, Bushra, Faheem Ullah, M. Ali Babar e Raj Gaire. "Machine Learning for Detecting Data Exfiltration". ACM Computing Surveys 54, n. 3 (giugno 2021): 1–47. http://dx.doi.org/10.1145/3442181.
Testo completoBergadano, F., e D. Gunetti. "Learning relations and logic programs". Knowledge Engineering Review 9, n. 1 (marzo 1994): 73–77. http://dx.doi.org/10.1017/s0269888900006615.
Testo completoNaseem, Rashid, Zain Shaukat, Muhammad Irfan, Muhammad Arif Shah, Arshad Ahmad, Fazal Muhammad, Adam Glowacz, Larisa Dunai, Jose Antonino-Daviu e Adel Sulaiman. "Empirical Assessment of Machine Learning Techniques for Software Requirements Risk Prediction". Electronics 10, n. 2 (14 gennaio 2021): 168. http://dx.doi.org/10.3390/electronics10020168.
Testo completoP, Gouthaman, e Suresh Sankaranarayanan. "Prediction of Risk Percentage in Software Projects by Training Machine Learning Classifiers". Computers & Electrical Engineering 94 (settembre 2021): 107362. http://dx.doi.org/10.1016/j.compeleceng.2021.107362.
Testo completoMartin, Ignacio, Sebastian Troia, Jose Alberto Hernandez, Alberto Rodriguez, Francesco Musumeci, Guido Maier, Rodolfo Alvizu e Oscar Gonzalez de Dios. "Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks". IEEE Transactions on Network and Service Management 16, n. 3 (settembre 2019): 871–83. http://dx.doi.org/10.1109/tnsm.2019.2927867.
Testo completoVladlen, Devin, Tkachuk Vasil e Skorobogatov Dmytro. "USAGE OF «GIM» SOFTWARE WHILE TEACHING "TECHNICAL MECHANICS" DISCIPLINE". OPEN EDUCATIONAL E-ENVIRONMENT OF MODERN UNIVERSITY, n. 7 (2019): 17–29. http://dx.doi.org/10.28925/2414-0325.2019.7.2.
Testo completoAshik, Mathew, A. Jyothish, S. Anandaram, P. Vinod, Francesco Mercaldo, Fabio Martinelli e Antonella Santone. "Detection of Malicious Software by Analyzing Distinct Artifacts Using Machine Learning and Deep Learning Algorithms". Electronics 10, n. 14 (15 luglio 2021): 1694. http://dx.doi.org/10.3390/electronics10141694.
Testo completoMoreb, Mohammed, Tareq Abed Mohammed e Oguz Bayat. "A Novel Software Engineering Approach Toward Using Machine Learning for Improving the Efficiency of Health Systems". IEEE Access 8 (2020): 23169–78. http://dx.doi.org/10.1109/access.2020.2970178.
Testo completoWaqar, Muhammad, Hassan Dawood, Hussain Dawood, Nadeem Majeed, Ameen Banjar e Riad Alharbey. "An Efficient SMOTE-Based Deep Learning Model for Heart Attack Prediction". Scientific Programming 2021 (15 marzo 2021): 1–12. http://dx.doi.org/10.1155/2021/6621622.
Testo completoRahimi, Nouf, Fathy Eassa e Lamiaa Elrefaei. "An Ensemble Machine Learning Technique for Functional Requirement Classification". Symmetry 12, n. 10 (25 settembre 2020): 1601. http://dx.doi.org/10.3390/sym12101601.
Testo completoMorejón, Reinier, Marx Viana e Carlos Lucena. "An Approach to Generate Software Agents for Health Data Mining". International Journal of Software Engineering and Knowledge Engineering 27, n. 09n10 (novembre 2017): 1579–89. http://dx.doi.org/10.1142/s0218194017400125.
Testo completoA G, Priya Varshini, Anitha Kumari K e Vijayakumar Varadarajan. "Estimating Software Development Efforts Using a Random Forest-Based Stacked Ensemble Approach". Electronics 10, n. 10 (17 maggio 2021): 1195. http://dx.doi.org/10.3390/electronics10101195.
Testo completoBerselli, Giovanni, Pietro Bilancia e Luca Luzi. "Project-based learning of advanced CAD/CAE tools in engineering education". International Journal on Interactive Design and Manufacturing (IJIDeM) 14, n. 3 (14 agosto 2020): 1071–83. http://dx.doi.org/10.1007/s12008-020-00687-4.
Testo completoImran, Zeba Ghaffar, Abdullah Alshahrani, Muhammad Fayaz, Ahmed Mohammed Alghamdi e Jeonghwan Gwak. "A Topical Review on Machine Learning, Software Defined Networking, Internet of Things Applications: Research Limitations and Challenges". Electronics 10, n. 8 (7 aprile 2021): 880. http://dx.doi.org/10.3390/electronics10080880.
Testo completoKhoroshko, Leonid Leonidovich, Peter A. Ukhov e Pavel P. Keyno. "Development of Massive Open Online Courses Based on 3D Computer Graphics and Multimedia". International Journal of Engineering Pedagogy (iJEP) 9, n. 4 (29 agosto 2019): 4. http://dx.doi.org/10.3991/ijep.v9i4.10193.
Testo completoToth, Laszlo, e Laszlo Vidacs. "Comparative Study of The Performance of Various Classifiers in Labeling Non-Functional Requirements". Information Technology And Control 48, n. 3 (24 settembre 2019): 432–45. http://dx.doi.org/10.5755/j01.itc.48.3.21973.
Testo completoShoureshi, R., D. Swedes e R. Evans. "Learning Control for Autonomous Machines". Robotica 9, n. 2 (aprile 1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Testo completoKorzeniowski, Łukasz, e Krzysztof Goczyła. "Artificial intelligence for software development — the present and the challenges for the future". Bulletin of the Military University of Technology 68, n. 1 (29 marzo 2019): 15–32. http://dx.doi.org/10.5604/01.3001.0013.1464.
Testo completoRasool, Raihan Ur, Usman Ashraf, Khandakar Ahmed, Hua Wang, Wajid Rafique e Zahid Anwar. "Cyberpulse: A Machine Learning Based Link Flooding Attack Mitigation System for Software Defined Networks". IEEE Access 7 (2019): 34885–99. http://dx.doi.org/10.1109/access.2019.2904236.
Testo completoJentzsch, Sophie, e Nico Hochgeschwender. "A qualitative study of Machine Learning practices and engineering challenges in Earth Observation". it - Information Technology 63, n. 4 (15 luglio 2021): 235–47. http://dx.doi.org/10.1515/itit-2020-0045.
Testo completoMoreb, Mohammed, Tareq Abed Mohammed, Oguz Bayat e Oguz Ata. "Corrections to “A Novel Software Engineering Approach Toward Using Machine Learning for Improving the Efficiency of Health Systems“". IEEE Access 8 (2020): 136459. http://dx.doi.org/10.1109/access.2020.2986259.
Testo completoMarques, Carla Verônica Machado, Carlo Emmanoel Tolla de Oliveira e Cibele Ribeiro da Cunha Oliveira. "The Cognitive Machine as Mental Language Automata". International Journal of Cognitive Informatics and Natural Intelligence 12, n. 1 (gennaio 2018): 75–91. http://dx.doi.org/10.4018/ijcini.2018010106.
Testo completo