Articoli di riviste sul tema "Computer software. Software engineering. Machine learning"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Computer software. Software engineering. Machine learning".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Hussain*, Mandi Akif, Revoori Veeharika Reddy, Kedharnath Nagella, and Vidya S. "Software Defect Estimation using Machine Learning Algorithms." International Journal of Recent Technology and Engineering 10, no. 1 (2021): 204–8. http://dx.doi.org/10.35940/ijrte.a5898.0510121.
Testo completoBera, Debjyoti, Mathijs Schuts, Jozef Hooman, and Ivan Kurtev. "Reverse engineering models of software interfaces." Computer Science and Information Systems 18, no. 3 (2021): 657–86. http://dx.doi.org/10.2298/csis200131013b.
Testo completoChung, Chih-Ko, and Pi-Chung Wang. "Version-Wide Software Birthmark via Machine Learning." IEEE Access 9 (2021): 110811–25. http://dx.doi.org/10.1109/access.2021.3103186.
Testo completoAl Sghaier, Hiba. "RESEARCH TRENDS IN SOFTWARE ENGINEERING FIELD: A LITERATURE REVIEW." International Journal of Engineering Technologies and Management Research 7, no. 6 (2020): 58–65. http://dx.doi.org/10.29121/ijetmr.v2020.i7.6.694.
Testo completoAl Sghaier, Hiba. "RESEARCH TRENDS IN SOFTWARE ENGINEERING FIELD: A LITERATURE REVIEW." International Journal of Engineering Technologies and Management Research 7, no. 6 (2020): 58–65. http://dx.doi.org/10.29121/ijetmr.v7.i6.2020.694.
Testo completoSaputri, Theresia Ratih Dewi, and Seok-Won Lee. "Software Analysis Method for Assessing Software Sustainability." International Journal of Software Engineering and Knowledge Engineering 30, no. 01 (2020): 67–95. http://dx.doi.org/10.1142/s0218194020500047.
Testo completoBAILIN, SIDNEY C., ROBERT H. GATTIS, and WALT TRUSZKOWSKI. "A LEARNING-BASED SOFTWARE ENGINEERING ENVIRONMENT FOR REUSING DESIGN KNOWLEDGE." International Journal of Software Engineering and Knowledge Engineering 01, no. 04 (1991): 351–71. http://dx.doi.org/10.1142/s0218194091000251.
Testo completoSiewruk, Grzegorz, and Wojciech Mazurczyk. "Context-Aware Software Vulnerability Classification Using Machine Learning." IEEE Access 9 (2021): 88852–67. http://dx.doi.org/10.1109/access.2021.3075385.
Testo completoFirdaus Zainal Abidin, Ahmad, Mohd Faaizie Darmawan, Mohd Zamri Osman, et al. "Adaboost-multilayer perceptron to predict the student’s performance in software engineering." Bulletin of Electrical Engineering and Informatics 8, no. 4 (2019): 1556–62. http://dx.doi.org/10.11591/eei.v8i4.1432.
Testo completoAZAR, DANIELLE. "A GENETIC ALGORITHM FOR IMPROVING ACCURACY OF SOFTWARE QUALITY PREDICTIVE MODELS: A SEARCH-BASED SOFTWARE ENGINEERING APPROACH." International Journal of Computational Intelligence and Applications 09, no. 02 (2010): 125–36. http://dx.doi.org/10.1142/s1469026810002811.
Testo completoMedeiros, Nadia, Naghmeh Ivaki, Pedro Costa, and Marco Vieira. "Vulnerable Code Detection Using Software Metrics and Machine Learning." IEEE Access 8 (2020): 219174–98. http://dx.doi.org/10.1109/access.2020.3041181.
Testo completoDe Carvalho, Halcyon Davys Pereira, Roberta Fagundes, and Wylliams Santos. "Extreme Learning Machine Applied to Software Development Effort Estimation." IEEE Access 9 (2021): 92676–87. http://dx.doi.org/10.1109/access.2021.3091313.
Testo completoGanapathy, Apoorva, and Taposh Kumar Neogy. "Artificial Intelligence Price Emulator: A Study on Cryptocurrency." Global Disclosure of Economics and Business 6, no. 2 (2017): 115–22. http://dx.doi.org/10.18034/gdeb.v6i2.558.
Testo completoPandey, Sushant Kumar, Ravi Bhushan Mishra, and Anil Kumar Tripathi. "Machine learning based methods for software fault prediction: A survey." Expert Systems with Applications 172 (June 2021): 114595. http://dx.doi.org/10.1016/j.eswa.2021.114595.
Testo completoRodríguez-Gracia, Diego, José A. Piedra-Fernández, Luis Iribarne, et al. "Microservices and Machine Learning Algorithms for Adaptive Green Buildings." Sustainability 11, no. 16 (2019): 4320. http://dx.doi.org/10.3390/su11164320.
Testo completoZheng, Wei, Yutong Bai, and Haoxuan Che. "A computer-assisted instructional method based on machine learning in software testing class." Computer Applications in Engineering Education 26, no. 5 (2018): 1150–58. http://dx.doi.org/10.1002/cae.21962.
Testo completoMahdi, Mohammed Najah, Mohd Hazli Mohamed Zabil, Abdul Rahim Ahmad, et al. "Software Project Management Using Machine Learning Technique—A Review." Applied Sciences 11, no. 11 (2021): 5183. http://dx.doi.org/10.3390/app11115183.
Testo completoPerlovsky, Leonid, and Gary Kuvich. "Machine Learning and Cognitive Algorithms for Engineering Applications." International Journal of Cognitive Informatics and Natural Intelligence 7, no. 4 (2013): 64–82. http://dx.doi.org/10.4018/ijcini.2013100104.
Testo completoGirard, Simon R., Vincent Legault, Guy Bois, and Jean-François Boland. "Avionics Graphics Hardware Performance Prediction with Machine Learning." Scientific Programming 2019 (June 3, 2019): 1–15. http://dx.doi.org/10.1155/2019/9195845.
Testo completoRadliński, Łukasz. "Predicting Aggregated User Satisfaction in Software Projects." Foundations of Computing and Decision Sciences 43, no. 4 (2018): 335–57. http://dx.doi.org/10.1515/fcds-2018-0017.
Testo completoTiwari, Tanya, Tanuj Tiwari, and Sanjay Tiwari. "How Artificial Intelligence, Machine Learning and Deep Learning are Radically Different?" International Journal of Advanced Research in Computer Science and Software Engineering 8, no. 2 (2018): 1. http://dx.doi.org/10.23956/ijarcsse.v8i2.569.
Testo completoNAKKRASAE, SATHIT, and PERAPHON SOPHATSATHIT. "AN RPCL-BASED INDEXING APPROACH FOR SOFTWARE COMPONENT CLASSIFICATION." International Journal of Software Engineering and Knowledge Engineering 14, no. 05 (2004): 497–518. http://dx.doi.org/10.1142/s0218194004001774.
Testo completoSheneamer, Abdullah M. "An Automatic Advisor for Refactoring Software Clones Based on Machine Learning." IEEE Access 8 (2020): 124978–88. http://dx.doi.org/10.1109/access.2020.3006178.
Testo completoLo, Sin Kit, Qinghua Lu, Chen Wang, Hye-Young Paik, and Liming Zhu. "A Systematic Literature Review on Federated Machine Learning." ACM Computing Surveys 54, no. 5 (2021): 1–39. http://dx.doi.org/10.1145/3450288.
Testo completoCândido, Jeanderson, Maurício Aniche, and Arie van Deursen. "Log-based software monitoring: a systematic mapping study." PeerJ Computer Science 7 (May 6, 2021): e489. http://dx.doi.org/10.7717/peerj-cs.489.
Testo completoAkimova, Elena N., Alexander Yu Bersenev, Artem A. Deikov, et al. "A Survey on Software Defect Prediction Using Deep Learning." Mathematics 9, no. 11 (2021): 1180. http://dx.doi.org/10.3390/math9111180.
Testo completoTwala, Bhekisipho. "Predicting Software Faults in Large Space Systems using Machine Learning Techniques." Defence Science Journal 61, no. 4 (2011): 306–16. http://dx.doi.org/10.14429/dsj.61.1088.
Testo completoBailin, Sidney, Scott Henderson, and Walt Truszkowski. "Application of machine learning to the organization of institutional software repositories." Telematics and Informatics 10, no. 3 (1993): 283–99. http://dx.doi.org/10.1016/0736-5853(93)90031-x.
Testo completoSabir, Bushra, Faheem Ullah, M. Ali Babar, and Raj Gaire. "Machine Learning for Detecting Data Exfiltration." ACM Computing Surveys 54, no. 3 (2021): 1–47. http://dx.doi.org/10.1145/3442181.
Testo completoBergadano, F., and D. Gunetti. "Learning relations and logic programs." Knowledge Engineering Review 9, no. 1 (1994): 73–77. http://dx.doi.org/10.1017/s0269888900006615.
Testo completoNaseem, Rashid, Zain Shaukat, Muhammad Irfan, et al. "Empirical Assessment of Machine Learning Techniques for Software Requirements Risk Prediction." Electronics 10, no. 2 (2021): 168. http://dx.doi.org/10.3390/electronics10020168.
Testo completoP, Gouthaman, and Suresh Sankaranarayanan. "Prediction of Risk Percentage in Software Projects by Training Machine Learning Classifiers." Computers & Electrical Engineering 94 (September 2021): 107362. http://dx.doi.org/10.1016/j.compeleceng.2021.107362.
Testo completoMartin, Ignacio, Sebastian Troia, Jose Alberto Hernandez, et al. "Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks." IEEE Transactions on Network and Service Management 16, no. 3 (2019): 871–83. http://dx.doi.org/10.1109/tnsm.2019.2927867.
Testo completoVladlen, Devin, Tkachuk Vasil, and Skorobogatov Dmytro. "USAGE OF «GIM» SOFTWARE WHILE TEACHING "TECHNICAL MECHANICS" DISCIPLINE." OPEN EDUCATIONAL E-ENVIRONMENT OF MODERN UNIVERSITY, no. 7 (2019): 17–29. http://dx.doi.org/10.28925/2414-0325.2019.7.2.
Testo completoAshik, Mathew, A. Jyothish, S. Anandaram, et al. "Detection of Malicious Software by Analyzing Distinct Artifacts Using Machine Learning and Deep Learning Algorithms." Electronics 10, no. 14 (2021): 1694. http://dx.doi.org/10.3390/electronics10141694.
Testo completoMoreb, Mohammed, Tareq Abed Mohammed, and Oguz Bayat. "A Novel Software Engineering Approach Toward Using Machine Learning for Improving the Efficiency of Health Systems." IEEE Access 8 (2020): 23169–78. http://dx.doi.org/10.1109/access.2020.2970178.
Testo completoWaqar, Muhammad, Hassan Dawood, Hussain Dawood, Nadeem Majeed, Ameen Banjar, and Riad Alharbey. "An Efficient SMOTE-Based Deep Learning Model for Heart Attack Prediction." Scientific Programming 2021 (March 15, 2021): 1–12. http://dx.doi.org/10.1155/2021/6621622.
Testo completoRahimi, Nouf, Fathy Eassa, and Lamiaa Elrefaei. "An Ensemble Machine Learning Technique for Functional Requirement Classification." Symmetry 12, no. 10 (2020): 1601. http://dx.doi.org/10.3390/sym12101601.
Testo completoMorejón, Reinier, Marx Viana, and Carlos Lucena. "An Approach to Generate Software Agents for Health Data Mining." International Journal of Software Engineering and Knowledge Engineering 27, no. 09n10 (2017): 1579–89. http://dx.doi.org/10.1142/s0218194017400125.
Testo completoA G, Priya Varshini, Anitha Kumari K, and Vijayakumar Varadarajan. "Estimating Software Development Efforts Using a Random Forest-Based Stacked Ensemble Approach." Electronics 10, no. 10 (2021): 1195. http://dx.doi.org/10.3390/electronics10101195.
Testo completoBerselli, Giovanni, Pietro Bilancia, and Luca Luzi. "Project-based learning of advanced CAD/CAE tools in engineering education." International Journal on Interactive Design and Manufacturing (IJIDeM) 14, no. 3 (2020): 1071–83. http://dx.doi.org/10.1007/s12008-020-00687-4.
Testo completoImran, Zeba Ghaffar, Abdullah Alshahrani, Muhammad Fayaz, Ahmed Mohammed Alghamdi, and Jeonghwan Gwak. "A Topical Review on Machine Learning, Software Defined Networking, Internet of Things Applications: Research Limitations and Challenges." Electronics 10, no. 8 (2021): 880. http://dx.doi.org/10.3390/electronics10080880.
Testo completoKhoroshko, Leonid Leonidovich, Peter A. Ukhov, and Pavel P. Keyno. "Development of Massive Open Online Courses Based on 3D Computer Graphics and Multimedia." International Journal of Engineering Pedagogy (iJEP) 9, no. 4 (2019): 4. http://dx.doi.org/10.3991/ijep.v9i4.10193.
Testo completoToth, Laszlo, and Laszlo Vidacs. "Comparative Study of The Performance of Various Classifiers in Labeling Non-Functional Requirements." Information Technology And Control 48, no. 3 (2019): 432–45. http://dx.doi.org/10.5755/j01.itc.48.3.21973.
Testo completoShoureshi, R., D. Swedes, and R. Evans. "Learning Control for Autonomous Machines." Robotica 9, no. 2 (1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Testo completoKorzeniowski, Łukasz, and Krzysztof Goczyła. "Artificial intelligence for software development — the present and the challenges for the future." Bulletin of the Military University of Technology 68, no. 1 (2019): 15–32. http://dx.doi.org/10.5604/01.3001.0013.1464.
Testo completoRasool, Raihan Ur, Usman Ashraf, Khandakar Ahmed, Hua Wang, Wajid Rafique, and Zahid Anwar. "Cyberpulse: A Machine Learning Based Link Flooding Attack Mitigation System for Software Defined Networks." IEEE Access 7 (2019): 34885–99. http://dx.doi.org/10.1109/access.2019.2904236.
Testo completoJentzsch, Sophie, and Nico Hochgeschwender. "A qualitative study of Machine Learning practices and engineering challenges in Earth Observation." it - Information Technology 63, no. 4 (2021): 235–47. http://dx.doi.org/10.1515/itit-2020-0045.
Testo completoMoreb, Mohammed, Tareq Abed Mohammed, Oguz Bayat, and Oguz Ata. "Corrections to “A Novel Software Engineering Approach Toward Using Machine Learning for Improving the Efficiency of Health Systems“." IEEE Access 8 (2020): 136459. http://dx.doi.org/10.1109/access.2020.2986259.
Testo completoMarques, Carla Verônica Machado, Carlo Emmanoel Tolla de Oliveira, and Cibele Ribeiro da Cunha Oliveira. "The Cognitive Machine as Mental Language Automata." International Journal of Cognitive Informatics and Natural Intelligence 12, no. 1 (2018): 75–91. http://dx.doi.org/10.4018/ijcini.2018010106.
Testo completo