Letteratura scientifica selezionata sul tema "Convex projective geometry"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Convex projective geometry".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Convex projective geometry"

1

Wienhard, Anna, and Tengren Zhang. "Deforming convex real projective structures." Geometriae Dedicata 192, no. 1 (2017): 327–60. http://dx.doi.org/10.1007/s10711-017-0243-z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Weisman, Theodore. "Dynamical properties of convex cocompact actions in projective space." Journal of Topology 16, no. 3 (2023): 990–1047. http://dx.doi.org/10.1112/topo.12307.

Testo completo
Abstract (sommario):
AbstractWe give a dynamical characterization of convex cocompact group actions on properly convex domains in projective space in the sense of Danciger–Guéritaud–Kassel: we show that convex cocompactness in is equivalent to an expansion property of the group about its limit set, occurring in different Grassmannians. As an application, we give a sufficient and necessary condition for convex cocompactness for groups that are hyperbolic relative to a collection of convex cocompact subgroups. We show that convex cocompactness in this situation is equivalent to the existence of an equivariant homeom
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Kapovich, Michael. "Convex projective structures on Gromov–Thurston manifolds." Geometry & Topology 11, no. 3 (2007): 1777–830. http://dx.doi.org/10.2140/gt.2007.11.1777.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kim, Inkang. "Compactification of Strictly Convex Real Projective Structures." Geometriae Dedicata 113, no. 1 (2005): 185–95. http://dx.doi.org/10.1007/s10711-005-0550-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kohn, Kathlén, and Kristian Ranestad. "Projective Geometry of Wachspress Coordinates." Foundations of Computational Mathematics 20, no. 5 (2019): 1135–73. http://dx.doi.org/10.1007/s10208-019-09441-z.

Testo completo
Abstract (sommario):
Abstract We show that there is a unique hypersurface of minimal degree passing through the non-faces of a polytope which is defined by a simple hyperplane arrangement. This generalizes the construction of the adjoint curve of a polygon by Wachspress (A rational finite element basis, Academic Press, New York, 1975). The defining polynomial of our adjoint hypersurface is the adjoint polynomial introduced by Warren (Adv Comput Math 6:97–108, 1996). This is a key ingredient for the definition of Wachspress coordinates, which are barycentric coordinates on an arbitrary convex polytope. The adjoint
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Hildebrand, Roland. "Optimal Inequalities Between Distances in Convex Projective Domains." Journal of Geometric Analysis 31, no. 11 (2021): 11357–85. http://dx.doi.org/10.1007/s12220-021-00684-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Benoist, Yves, and Dominique Hulin. "Cubic differentials and finite volume convex projective surfaces." Geometry & Topology 17, no. 1 (2013): 595–620. http://dx.doi.org/10.2140/gt.2013.17.595.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Sioen, M., and S. Verwulgen. "Locally convex approach spaces." Applied General Topology 4, no. 2 (2003): 263. http://dx.doi.org/10.4995/agt.2003.2031.

Testo completo
Abstract (sommario):
<p>We continue the investigation of suitable structures for quantified functional analysis, by looking at the notion of local convexity in the setting of approach vector spaces as introduced in [6]. We prove that the locally convex objects are exactly the ones generated (in the usual approach sense) by collections of seminorms. Furthermore, we construct a quantified version of the projective tensor product and show that the locally convex objects admitting a decent exponential law with respect to it are precisely the seminormed spaces.</p>
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Bray, Harrison, and David Constantine. "Entropy rigidity for finite volume strictly convex projective manifolds." Geometriae Dedicata 214, no. 1 (2021): 543–57. http://dx.doi.org/10.1007/s10711-021-00627-w.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Zimmer, Andrew. "A higher-rank rigidity theorem for convex real projective manifolds." Geometry & Topology 27, no. 7 (2023): 2899–936. http://dx.doi.org/10.2140/gt.2023.27.2899.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!