Letteratura scientifica selezionata sul tema "Creep resistant material"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Creep resistant material".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Creep resistant material"
Oruganti, Ram. "Creep and Material Design". Material Science Research India 9, n. 1 (20 giugno 2012): 169–71. http://dx.doi.org/10.13005/msri/090125.
Testo completoHyde, C. J., T. H. Hyde, W. Sun, S. Nardone e E. De Bruycker. "Small ring testing of a creep resistant material". Materials Science and Engineering: A 586 (dicembre 2013): 358–66. http://dx.doi.org/10.1016/j.msea.2013.07.081.
Testo completoSklenička, Vàclav, Květa Kuchařová, Marie Kvapilová, Luboš Kloc, Jiří Dvořák e Petr Král. "High-Temperature Creep Tests of Two Creep-Resistant Materials at Constant Stress and Constant Load". Key Engineering Materials 827 (dicembre 2019): 246–51. http://dx.doi.org/10.4028/www.scientific.net/kem.827.246.
Testo completoSklenička, Vàclav, Květa Kuchařová, Jiří Dvořák, Marie Kvapilová e Petr Král. "Creep Damage Tolerance Factor λ of Selected Creep-Resistant Steels". Key Engineering Materials 754 (settembre 2017): 47–50. http://dx.doi.org/10.4028/www.scientific.net/kem.754.47.
Testo completoAntipov, A. A., V. A. Gorokhov, V. V. Egunov, D. A. Kazakov, S. A. Kapustin e Yu A. Churilov. "NUMERICAL SIMULATION OF HIGH-TEMPERATURE CREEP OF ELEMENTS OF HEAT-RESISTANT ALLOYS STRUCTURES TAKING INTO ACCOUNT NEUTRON IRRADIATION EFFECTS". Problems of strenght and plasticity 81, n. 3 (2019): 345–58. http://dx.doi.org/10.32326/1814-9146-2019-81-3-345-358.
Testo completoHyun, Yang Ki, Soon Ho Won, Jae Ho Jang e In Bae Kim. "The Evaluation of Material Degradation in Modified 9Cr-1Mo Steel by Electrochemical and Magnetic Property Analysis". Key Engineering Materials 321-323 (ottobre 2006): 486–91. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.486.
Testo completoBrnic, Josip, Goran Turkalj, Sanjin Krscanski, Goran Vukelic e Marko Canadija. "Uniaxial Properties versus Temperature, Creep and Impact Energy of an Austenitic Steel". High Temperature Materials and Processes 36, n. 2 (1 febbraio 2017): 135–43. http://dx.doi.org/10.1515/htmp-2015-0174.
Testo completoYang, You, Xiao Dong Wang e Wei Feng Tang. "Study on the High Temperature Creep Behavior of 30Cr25Ni20 Heat-Resistant Steel". Key Engineering Materials 814 (luglio 2019): 157–62. http://dx.doi.org/10.4028/www.scientific.net/kem.814.157.
Testo completoBauné, Emmanuel, E. Galand, B. Leduey, G. Liberati, G. Cumino, S. Caminada, A. Di Gianfrancesco e L. Cipolla. "Grades 92 and 23: Weldability Assessment and Long-Term Performances for Power Generation Applications". Materials Science Forum 580-582 (giugno 2008): 383–88. http://dx.doi.org/10.4028/www.scientific.net/msf.580-582.383.
Testo completoBrnic, Josip, Marino Brcic, Sebastian Balos, Goran Vukelic, Sanjin Krscanski, Mladomir Milutinovic e Miroslav Dramicanin. "S235JRC+C Steel Response Analysis Subjected to Uniaxial Stress Tests in the Area of High Temperatures and Material Fatigue". Sustainability 13, n. 10 (19 maggio 2021): 5675. http://dx.doi.org/10.3390/su13105675.
Testo completoTesi sul tema "Creep resistant material"
Lundberg, Daniel, Filip Wilson, Hjalmar Gunnarsson, Leo Sjörén, Robin Xu e Erik Djurberg. "Long term aging and creep exposure for advanced heat resistant alloys : A phase analysis". Thesis, Uppsala universitet, Institutionen för materialvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446407.
Testo completoStracey, Muhammad Ghalib. "Continuum Damage Mechanics (CDM) modelling of dislocation creep in 9-12% Cr creep resistant steels". Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/22994.
Testo completoIbanez, Alejandro R. "Modeling creep behavior in a directionally solidified nickel base superalloy". Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5353.
Testo completoPeterson, Benjamin Howard. "A Combinatorial Approach to the Development of a Creep Resistant Beta Titanium Alloy". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218488816.
Testo completode, Bussac Arnaud. "A study of deformation and fatigue in model Ni-base superalloys". Thesis, Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/20174.
Testo completoStrader, Katherine C. "Phase Transformation Behavior and Stress Relief Cracking Susceptibility in Creep Resistant Steels". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1408973568.
Testo completoAlmansour, Amjad Saleh Ali. "USE OF SINGLE TOW CERAMIC MATRIX MINICOMPOSITES TO DETERMINE FUNDAMENTAL ROOM AND ELEVATED TEMPERATURE PROPERTIES". University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron148640184494135.
Testo completoSmith, Andrew Logan Mr. "Thermodynamic Evaluation and Modeling of Grade 91 Alloy and its Secondary Phases through CALPHAD Approach". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3773.
Testo completoPoorteman, Marc. "Fabrication et caractérisation de composites céramiques renforcés par des plaquettes". Valenciennes, 1997. https://ged.uphf.fr/nuxeo/site/esupversions/078152fe-6c38-4759-a136-3513bbe27089.
Testo completoFredholm, Allan. "Monocristaux d'alliages base nickel : relation entre composition, microstructure et comportement en fluage a haute temperature". Paris, ENMP, 1987. http://www.theses.fr/1987ENMP0020.
Testo completoLibri sul tema "Creep resistant material"
de, Villiers H. L., a cura di. The physics of creep: Creep and creep-resistant alloys. London: Taylor & Francis, 1995.
Cerca il testo completoWebster, G. A. High temperature component life assessment. London: Chapman & Hall, 1994.
Cerca il testo completoGrisaffe, Salvatore J. Reinforcements: The key to high performance composite materials. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Cerca il testo completoWhittenberger, J. Daniel. Elevated temperature creep properties of NiAl cryomilled with and without Y₂O₃. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Cerca il testo completoUnited States. National Aeronautics and Space Administration., a cura di. Probabilistic material strength degradation model for Iconel 718 components subjected to high temperature, mechanical fatigue, creep and thermal fatigue effects. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Cerca il testo completoM, McLean, e Strang A, a cura di. Modelling of microstructural evolution in creep resistant materials. London: IOM Communications, 1999.
Cerca il testo completo(Editor), R. S. Mishra, Amiya K. Mukherjee (Editor) e K. Linga Murty (Editor), a cura di. Creep Behavior of Advanced Materials for the 21st Century. Minerals, Metals, & Materials Society, 1999.
Cerca il testo completoWebster, G. A., e R. A. Ainsworth. High Temperature Component Life Assessment. Springer, 1994.
Cerca il testo completo(Editor), Andrew Strang, J. Cawley (Editor) e G. W. Greenwood (Editor), a cura di. Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications (Microstructure of High Temperature Materials). Ashgate Publishing, 1998.
Cerca il testo completoCapitoli di libri sul tema "Creep resistant material"
Kang, Dae H., Min S. Yoo, Sung S. Park e Nack J. Kim. "Development of Creep Resistant Mg Alloys". In Materials Science Forum, 521–24. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.521.
Testo completoBerger, C., J. Granacher e Y. Kostenko. "Creep Equations for Heat Resistant Steels". In Steels and Materials for Power Plants, 345–51. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606181.ch60.
Testo completoSchlarb, Alois K., Jing Lei Yang e Zhong Zhang. "Creep Resistance of Thermoplastic Nanocomposites". In The Mechanical Behavior of Materials X, 1621–24. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-440-5.1621.
Testo completoEisenträger, Johanna, e Holm Altenbach. "Creep in Heat-resistant Steels at Elevated Temperatures". In Advanced Structured Materials, 79–112. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30355-6_4.
Testo completoChung, T. E., e T. J. Davies. "Creep Fracture Resistance of Uranium Dioxide". In Fracture of Engineering Materials and Structures, 619–24. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3650-1_91.
Testo completoCoussement, C., e L. Verelst. "Multiaxial Creep Behaviour of Welded Components in High Strength Ferritic/Martensitic Creep Resistant Steels". In Materials for Advanced Power Engineering 1994, 329–40. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1048-8_25.
Testo completoLi, Zhongkui, Wen Sheng Wang, J. J. Zhang e L. Zhou. "Creep Resistance of Zr-Sn-Nb-Fe-Cr Alloy". In Materials Science Forum, 1405–8. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.1405.
Testo completoLiu, Hai Feng, Guodong Tong e Jun Hou. "Development of High Temperature Creep Resistant Magnesium Alloys for Die Casting". In Materials Science Forum, 279–82. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-968-7.279.
Testo completoMilička, Karel, e Ferdinand Dobeš. "Small Punch Testing of Creep Resistant Steels and Its Application". In Steels and Materials for Power Plants, 372–77. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606181.ch64.
Testo completoChoudhuri, Deep, S. G. Srinivasan, Mark A. Gibson e Rajarshi Banerjee. "Bonding Environments in a Creep–Resistant Mg–RE–Zn Alloy". In The Minerals, Metals & Materials Series, 471–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52392-7_64.
Testo completoAtti di convegni sul tema "Creep resistant material"
Lee, Hoomin, Seok-Jun Kang, Jae-Boong Choi e Moon-Ki Kim. "Creep Life Prediction of HR3C Steel Using Creep Damage Models". In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65923.
Testo completoKimura, Kazuhiro. "Assessment of Long-Term Creep Strength and Review of Allowable Stress of High Cr Ferritic Creep Resistant Steels". In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71039.
Testo completoHo¨gberg, Jan, Guocai Chai, Patrik Kjellstro¨m, Magnus Bostro¨m, Urban Forsberg e Rolf Sandstro¨m. "Creep Behavior of the Newly Developed Advanced Heat Resistant Austenitic Stainless Steel Grade UNS S31035". In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25727.
Testo completoMayr, Peter, Horst Cerjak, Claus Jochum e Jerzy Pasternak. "Long-Term Creep Behaviour of E911 Heat Resistant 9% Cr Steel Weldments Fabricated With Filler Metals of Different Creep Strength". In ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/creep2007-26713.
Testo completoChai, Guocai, Johan Hernblom, Keith Hottle, Urban Forsberg e Timo Peltola. "Long Term Performance of Newly Developed Austenitic Heat Resistant Stainless Steel Grade UNS S31035". In ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/etam2014-1004.
Testo completoHollis, K. J., D. P. Butt e R. G. Castro. "Impression Creep Behavior of Atmospheric Plasma-Sprayed and Hot Pressed MoSi2/Si3N4". In ITSC 1997, a cura di C. C. Berndt. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.itsc1997p0751.
Testo completoKostenko, Y., G. Lvov, E. Gorash, H. Altenbach e K. Naumenko. "Power Plant Component Design Using Creep-Damage Analysis". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13710.
Testo completoRakowski, James M., Charles P. Stinner, Mark Lipschutz e J. Preston Montague. "The Use and Performance of Oxidation and Creep-Resistant Stainless Steels in an Exhaust Gas Primary Surface Recuperator Application". In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53917.
Testo completo"Neutron Diffraction Investigation of Residual Stresses in Nickel Based Austenitic Weldments on Creep Resistant Cr-Mo-V Material". In Mechanical Stress Evaluation by Neutron and Synchrotron Radiation. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291678-16.
Testo completoBarua, B., M. C. Messner, R. I. Jetter e T. L. Sham. "Development of Design Method for High Temperature Nuclear Reactor Cladded Components". In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21469.
Testo completo