Articoli di riviste sul tema "Deep Recurrent Neural Network (DRNN)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Deep Recurrent Neural Network (DRNN)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Wei, Chih-Chiang, e Ju-Yueh Cheng. "Nearshore two-step typhoon wind-wave prediction using deep recurrent neural networks". Journal of Hydroinformatics 22, n. 2 (24 ottobre 2019): 346–67. http://dx.doi.org/10.2166/hydro.2019.084.
Testo completoSharma, Sameer Dev, Sonal Sharma, Rajesh Singh, Anita Gehlot, Neeraj Priyadarshi e Bhekisipho Twala. "Deep Recurrent Neural Network Assisted Stress Detection System for Working Professionals". Applied Sciences 12, n. 17 (30 agosto 2022): 8678. http://dx.doi.org/10.3390/app12178678.
Testo completoYe, Kai-Qiang, Hong Gao, Ping Xiao e Pei-Cheng Shi. "DRNN-based shift decision for automatic transmission". Advances in Mechanical Engineering 12, n. 11 (novembre 2020): 168781402097529. http://dx.doi.org/10.1177/1687814020975291.
Testo completoFan, J., Q. Li, J. Hou, X. Feng, H. Karimian e S. Lin. "A Spatiotemporal Prediction Framework for Air Pollution Based on Deep RNN". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W2 (19 ottobre 2017): 15–22. http://dx.doi.org/10.5194/isprs-annals-iv-4-w2-15-2017.
Testo completoSun, Xinyao, Anup Basu e Irene Cheng. "Multi-Sensor Motion Fusion Using Deep Neural Network Learning". International Journal of Multimedia Data Engineering and Management 8, n. 4 (ottobre 2017): 1–18. http://dx.doi.org/10.4018/ijmdem.2017100101.
Testo completoPopoola, Segun I., Bamidele Adebisi, Ruth Ande, Mohammad Hammoudeh, Kelvin Anoh e Aderemi A. Atayero. "SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks". Sensors 21, n. 9 (24 aprile 2021): 2985. http://dx.doi.org/10.3390/s21092985.
Testo completoKim, Beom-Hun, e Jae-Young Pyun. "ECG Identification For Personal Authentication Using LSTM-Based Deep Recurrent Neural Networks". Sensors 20, n. 11 (29 maggio 2020): 3069. http://dx.doi.org/10.3390/s20113069.
Testo completoSharma, Sameer Dev, Sonal Sharma, Rajesh Singh, Anita Gehlot, Neeraj Priyadarshi e Bhekisipho Twala. "Stress Detection System for Working Pregnant Women Using an Improved Deep Recurrent Neural Network". Electronics 11, n. 18 (9 settembre 2022): 2862. http://dx.doi.org/10.3390/electronics11182862.
Testo completoWei, Chih-Chiang. "Development of Stacked Long Short-Term Memory Neural Networks with Numerical Solutions for Wind Velocity Predictions". Advances in Meteorology 2020 (23 luglio 2020): 1–18. http://dx.doi.org/10.1155/2020/5462040.
Testo completoAnezi, Faisal Yousif Al. "Arabic Hate Speech Detection Using Deep Recurrent Neural Networks". Applied Sciences 12, n. 12 (13 giugno 2022): 6010. http://dx.doi.org/10.3390/app12126010.
Testo completoWang, Jinghua, Jin Cheng, Fang Liu, Lei Yan e Taijie Tang. "Research on the air quality prediction model of Wuhai mining area based on deep learning". E3S Web of Conferences 300 (2021): 02005. http://dx.doi.org/10.1051/e3sconf/202130002005.
Testo completoPuchkov, Andrey Yu, Maksim I. Dli e Ekaterina I. Lobaneva. "NEURO-FUZZY CLASSIFIER OF STATE OF THE TECHNOLOGICAL PROCESS". Bulletin of the Saint Petersburg State Institute of Technology (Technical University) 57 (2021): 105–10. http://dx.doi.org/10.36807/1998-9849-2020-57-83-105-110.
Testo completoLee, Geon Woo, e Hong Kook Kim. "Multi-Task Learning U-Net for Single-Channel Speech Enhancement and Mask-Based Voice Activity Detection". Applied Sciences 10, n. 9 (6 maggio 2020): 3230. http://dx.doi.org/10.3390/app10093230.
Testo completoAYAYDIN, Anıl, e M. Ali AKCAYOL. "Derin Öğrenme Tabanlı Havacılık Uçuş Verilerinde Gecikme Durumunun Tahmin Edilmesi". Bilişim Teknolojileri Dergisi 15, n. 3 (31 luglio 2022): 239–49. http://dx.doi.org/10.17671/gazibtd.1060646.
Testo completoYaprakdal, Fatma, M. Berkay Yılmaz, Mustafa Baysal e Amjad Anvari-Moghaddam. "A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid". Sustainability 12, n. 4 (22 febbraio 2020): 1653. http://dx.doi.org/10.3390/su12041653.
Testo completoYang, Bin, Wei Zhang e Haifeng Wang. "Stock Market Forecasting Using Restricted Gene Expression Programming". Computational Intelligence and Neuroscience 2019 (5 febbraio 2019): 1–14. http://dx.doi.org/10.1155/2019/7198962.
Testo completoDeva Hema, D., J. Tharun, G. Arun Dev e N. Sateesh. "A Robust False Spam Review Detection Using Deep Long Short-Term Memory (LSTM) Based Recurrent Neural Network". Journal of Computational and Theoretical Nanoscience 17, n. 8 (1 agosto 2020): 3421–26. http://dx.doi.org/10.1166/jctn.2020.9198.
Testo completoKim, Hyunsoo. "Feasibility of DRNN for Identifying Built Environment Barriers to Walkability Using Wearable Sensor Data from Pedestrians’ Gait". Applied Sciences 12, n. 9 (26 aprile 2022): 4384. http://dx.doi.org/10.3390/app12094384.
Testo completoKim, Hyunsoo. "Feasibility of DRNN for Identifying Built Environment Barriers to Walkability Using Wearable Sensor Data from Pedestrians’ Gait". Applied Sciences 12, n. 9 (26 aprile 2022): 4384. http://dx.doi.org/10.3390/app12094384.
Testo completoGunasekaran, K., R. Pitchai, Gogineni Krishna Chaitanya, D. Selvaraj, S. Annie Sheryl, Hesham S. Almoallim, Sulaiman Ali Alharbi, S. S. Raghavan e Belachew Girma Tesemma. "A Deep Learning Framework for Earlier Prediction of Diabetic Retinopathy from Fundus Photographs". BioMed Research International 2022 (7 giugno 2022): 1–15. http://dx.doi.org/10.1155/2022/3163496.
Testo completoYu, Danning, Kun Ni e Yunlong Liu. "Deep Q-Network with Predictive State Models in Partially Observable Domains". Mathematical Problems in Engineering 2020 (16 luglio 2020): 1–9. http://dx.doi.org/10.1155/2020/1596385.
Testo completoLiu, FeiPeng, e Wei Zhang. "Basketball Motion Posture Recognition Based on Recurrent Deep Learning Model". Mathematical Problems in Engineering 2022 (16 maggio 2022): 1–7. http://dx.doi.org/10.1155/2022/8314777.
Testo completoYan, Jianzhuo, Jiaxue Liu, Yongchuan Yu e Hongxia Xu. "Water Quality Prediction in the Luan River Based on 1-DRCNN and BiGRU Hybrid Neural Network Model". Water 13, n. 9 (30 aprile 2021): 1273. http://dx.doi.org/10.3390/w13091273.
Testo completoHu, Huangshui, Tingting Wang, Hongzhi Wang e Chuhang Wang. "Q-learning optimized diagonal recurrent neural network control strategy for brushless direct current motors". Advances in Mechanical Engineering 12, n. 9 (settembre 2020): 168781402095822. http://dx.doi.org/10.1177/1687814020958221.
Testo completoCUI, YUDING, e CAIHUA XIONG. "DYNAMIC RECURRENT NEURAL NETWORK BASED CLASSIFICATION SCHEME FOR MYOELECTRIC CONTROL OF UPPER LIMB REHABILITATION ROBOT". Journal of Mechanics in Medicine and Biology 14, n. 06 (dicembre 2014): 1440017. http://dx.doi.org/10.1142/s021951941440017x.
Testo completoLv, Ye, Jing Ma, De Cun He e Xiang Gao. "Diagonal Recurrent Neural Network-Based Electro-Hydraulic Servo System Control". Applied Mechanics and Materials 336-338 (luglio 2013): 581–84. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.581.
Testo completoElkenawy, Ahmed, Ahmad M. El-Nagar, Mohammad El-Bardini e Nabila M. El-Rabaie. "Diagonal recurrent neural network observer-based adaptive control for unknown nonlinear systems". Transactions of the Institute of Measurement and Control 42, n. 15 (16 giugno 2020): 2833–56. http://dx.doi.org/10.1177/0142331220921259.
Testo completoXiao, Nianhao, Yuanchen Zou, Yaguang Yin, Peishun Liu e Ruichun Tang. "DRNN: Deep Residual Neural Network for Heart Disease Prediction". Journal of Physics: Conference Series 1682 (novembre 2020): 012065. http://dx.doi.org/10.1088/1742-6596/1682/1/012065.
Testo completoFan, Ying Ping, e Hui Da Duan. "Oil-Filled Power Transformers Fault Diagnosis Based on Fuzzy-DRNN". Applied Mechanics and Materials 448-453 (ottobre 2013): 2520–23. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.2520.
Testo completoAUSSEM, ALEX, FIONN MURTAGH e MARC SARAZIN. "DYNAMICAL RECURRENT NEURAL NETWORKS — TOWARDS ENVIRONMENTAL TIME SERIES PREDICTION". International Journal of Neural Systems 06, n. 02 (giugno 1995): 145–70. http://dx.doi.org/10.1142/s0129065795000123.
Testo completoYon, Jung-Heum, Yong-Taek Kim, Jae-Yong Seo e Hong-Tae Jeon. "Dynamic Multidimensional Wavelet Neural Network and Its Application". Journal of Advanced Computational Intelligence and Intelligent Informatics 4, n. 5 (20 settembre 2000): 336–40. http://dx.doi.org/10.20965/jaciii.2000.p0336.
Testo completoJafari, Amir Hossein, Rached Dhaouadi e Ali Jhemi. "Nonlinear Friction Estimation in Elastic Drive Systems Using a Dynamic Neural Network-Based Observer". Journal of Advanced Computational Intelligence and Intelligent Informatics 17, n. 4 (20 luglio 2013): 637–46. http://dx.doi.org/10.20965/jaciii.2013.p0637.
Testo completoShen, Dong Kai, Jing Jing Wang e Zheng Hua Liu. "Robust BackStepping Control Based DRNN for Flight Simulator". Advanced Materials Research 139-141 (ottobre 2010): 1708–13. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.1708.
Testo completoOyewola, David Opeoluwa, Emmanuel Gbenga Dada, Sanjay Misra e Robertas Damaševičius. "Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing". PeerJ Computer Science 7 (2 marzo 2021): e352. http://dx.doi.org/10.7717/peerj-cs.352.
Testo completoDuan, Hui Da, e Qiao Song Li. "Power Transformers Fault Diagnosis Based on DRNN". Advanced Materials Research 960-961 (giugno 2014): 700–703. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.700.
Testo completoXu, Zhi Cheng, Bin Zhu e Qing Bin Jiang. "Application of Neural Network for Nonlinear Predictive Control". Advanced Materials Research 562-564 (agosto 2012): 1964–67. http://dx.doi.org/10.4028/www.scientific.net/amr.562-564.1964.
Testo completoChen, Mengwei, e Guichen Zhang. "EKF-DRNN autopilot for VLCC heading hybrid control". Transactions of the Institute of Measurement and Control 43, n. 13 (15 giugno 2021): 2983–99. http://dx.doi.org/10.1177/01423312211021750.
Testo completoJiang, Yu Lian, Jian Chang Liu e Shu Bin Tan. "Application of Q Learning-Based Self-Tuning PID with DRNN in the Strip Flatness and Gauge System". Applied Mechanics and Materials 494-495 (febbraio 2014): 1377–80. http://dx.doi.org/10.4028/www.scientific.net/amm.494-495.1377.
Testo completoWei, Zhi Qiang, e Dan Jin. "Position Tracking System of Filling Machine Based on Compound Control Strategy". Applied Mechanics and Materials 380-384 (agosto 2013): 321–24. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.321.
Testo completoRazaque, Abdul, Bandar Alotaibi, Munif Alotaibi, Shujaat Hussain, Aziz Alotaibi e Vladimir Jotsov. "Clickbait Detection Using Deep Recurrent Neural Network". Applied Sciences 12, n. 1 (5 gennaio 2022): 504. http://dx.doi.org/10.3390/app12010504.
Testo completoSong, Y. M., C. Zhang e Y. Q. Yu. "Neural Networks Based Active Vibration Control of Flexible Linkage Mechanisms". Journal of Mechanical Design 123, n. 2 (1 maggio 2000): 266–71. http://dx.doi.org/10.1115/1.1348269.
Testo completoThomas, Merin, e Latha C.A. "Sentimental analysis using recurrent neural network". International Journal of Engineering & Technology 7, n. 2.27 (2 agosto 2018): 88. http://dx.doi.org/10.14419/ijet.v7i2.27.12635.
Testo completoAhmad, Sk Syeed. "DNA Fragment Assembly using Deep Recurrent Neural Network". International Journal for Research in Applied Science and Engineering Technology 8, n. 5 (31 maggio 2020): 1142–49. http://dx.doi.org/10.22214/ijraset.2020.5181.
Testo completoShang, Kailin, Ziyi Chen, Zhixin Liu, Lihong Song, Wenfeng Zheng, Bo Yang, Shan Liu e Lirong Yin. "Haze Prediction Model Using Deep Recurrent Neural Network". Atmosphere 12, n. 12 (6 dicembre 2021): 1625. http://dx.doi.org/10.3390/atmos12121625.
Testo completoDube, Lucky, e Ehab H. E. Bayoumi. "DRNN Robust DTC for Induction Motor Drive Systems Using FSTPI". Journal Européen des Systèmes Automatisés 54, n. 4 (31 agosto 2021): 539–47. http://dx.doi.org/10.18280/jesa.540403.
Testo completoMa, Qianli, Zhenxi Lin, Enhuan Chen e Garrison Cottrell. "Temporal Pyramid Recurrent Neural Network". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 5061–68. http://dx.doi.org/10.1609/aaai.v34i04.5947.
Testo completoGallicchio, Claudio, e Alessio Micheli. "Fast and Deep Graph Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 3898–905. http://dx.doi.org/10.1609/aaai.v34i04.5803.
Testo completoChowanda, Andry, e Alan Darmasaputra Chowanda. "Recurrent Neural Network to Deep Learn Conversation in Indonesian". Procedia Computer Science 116 (2017): 579–86. http://dx.doi.org/10.1016/j.procs.2017.10.078.
Testo completoRajesh, Sangeetha, e N. J. Nalini. "Musical instrument emotion recognition using deep recurrent neural network". Procedia Computer Science 167 (2020): 16–25. http://dx.doi.org/10.1016/j.procs.2020.03.178.
Testo completoAlmiani, Muder, Alia AbuGhazleh, Amer Al-Rahayfeh, Saleh Atiewi e Abdul Razaque. "Deep recurrent neural network for IoT intrusion detection system". Simulation Modelling Practice and Theory 101 (maggio 2020): 102031. http://dx.doi.org/10.1016/j.simpat.2019.102031.
Testo completo