Letteratura scientifica selezionata sul tema "Direct interspecies electron transfer"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Direct interspecies electron transfer".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Direct interspecies electron transfer"
Zheng, Shiling, Fanghua Liu, Bingchen Wang, Yuechao Zhang e Derek R. Lovley. "Methanobacterium Capable of Direct Interspecies Electron Transfer". Environmental Science & Technology 54, n. 23 (18 novembre 2020): 15347–54. http://dx.doi.org/10.1021/acs.est.0c05525.
Testo completoLovley, Derek R. "Syntrophy Goes Electric: Direct Interspecies Electron Transfer". Annual Review of Microbiology 71, n. 1 (8 settembre 2017): 643–64. http://dx.doi.org/10.1146/annurev-micro-030117-020420.
Testo completoRotaru, Amelia-Elena, Pravin Malla Shrestha, Fanghua Liu, Beatrice Markovaite, Shanshan Chen, Kelly P. Nevin e Derek R. Lovley. "Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri". Applied and Environmental Microbiology 80, n. 15 (16 maggio 2014): 4599–605. http://dx.doi.org/10.1128/aem.00895-14.
Testo completoLiu, Fanghua, Amelia-Elena Rotaru, Pravin M. Shrestha, Nikhil S. Malvankar, Kelly P. Nevin e Derek R. Lovley. "Promoting direct interspecies electron transfer with activated carbon". Energy & Environmental Science 5, n. 10 (2012): 8982. http://dx.doi.org/10.1039/c2ee22459c.
Testo completoShrestha, Pravin Malla, Amelia-Elena Rotaru, Zarath M. Summers, Minita Shrestha, Fanghua Liu e Derek R. Lovley. "Transcriptomic and Genetic Analysis of Direct Interspecies Electron Transfer". Applied and Environmental Microbiology 79, n. 7 (1 febbraio 2013): 2397–404. http://dx.doi.org/10.1128/aem.03837-12.
Testo completoCheng, Qiwen, e Douglas F. Call. "Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications". Environmental Science: Processes & Impacts 18, n. 8 (2016): 968–80. http://dx.doi.org/10.1039/c6em00219f.
Testo completoRotaru, Amelia-Elena, Pravin M. Shrestha, Fanghua Liu, Toshiyuki Ueki, Kelly Nevin, Zarath M. Summers e Derek R. Lovley. "Interspecies Electron Transfer via Hydrogen and Formate Rather than Direct Electrical Connections in Cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens". Applied and Environmental Microbiology 78, n. 21 (24 agosto 2012): 7645–51. http://dx.doi.org/10.1128/aem.01946-12.
Testo completoStorck, Tomas, Bernardino Virdis e Damien J. Batstone. "Modelling extracellular limitations for mediated versus direct interspecies electron transfer". ISME Journal 10, n. 3 (6 novembre 2015): 621–31. http://dx.doi.org/10.1038/ismej.2015.139.
Testo completoBaek, Gahyun, Jaai Kim, Jinsu Kim e Changsoo Lee. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion". Energies 11, n. 1 (3 gennaio 2018): 107. http://dx.doi.org/10.3390/en11010107.
Testo completoZhang, Yaobin, Zhiqiang Zhao e Yang Li. "Direct interspecies electron transfer in anaerobic digestion: Research and technological application". Chinese Science Bulletin 65, n. 26 (15 luglio 2020): 2820–34. http://dx.doi.org/10.1360/tb-2020-0661.
Testo completoTesi sul tema "Direct interspecies electron transfer"
Marquart, Kyle Anthony. "pH as a control on interactions of methanogens and iron reducers". Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35567.
Testo completoDepartment of Geology
Matthew Kirk
A growing body of evidence demonstrates that methanogenesis and Fe(III) reduction can occur simultaneously. However, environmental controls on interactions between each are poorly understood. In this study we considered pH as a control on interactions between Fe(III) reduction and methanogenesis in anoxic sediment bioreactors. The reactors consisted of 100mL of synthetic aqueous media, and 1 g of marsh sediment amended with goethite (1mmol). One set of reactors received acidic media (pH 6), and the other alkaline media (pH 7.5). Each set received media containing acetate (0.25 mM) to serve as an electron donor. Control reactors, deficient in acetate, were also included. We maintained a fluid residence time of 35 days by sampling and feeding the reactors every seven days. For pH 6.0 and pH 7.5 reactors, the measured pH of effluent samples averaged 6.33 and 7.37, respectively. The extent of Fe(III) reduction and methanogenesis varied considerably between each set of reactors. More Fe(III) was reduced in the pH 6 reactors (646.39 μmoles on avg.) than the pH 7.5 reactors (31.32 μmoles on avg.). Conversely, more methane formed in pH 7.5 reactors (127.5 μmoles on avg.) than the pH 6 reactors (78.9 μmoles on avg.). Alkalinity concentrations during the middle and end of the experiment averaged 9.6 meq/L and 5.2 meq/L in pH 6 and pH7.5 reactors, respectively Although much less Fe(III) reduction occurred in pH 7.5 reactors, the relative abundance of Fe(III) reducers in them decreased little from levels observed in the pH 6 reactors. Sequences classified within Geobacter, a genus of bacteria known primarily as dissimilatory metal reducers, accounted for 22% and 13.45% of the sequences in the pH 6 and pH 7.5 reactors and only 0.8% of the sequences in the marsh sediment inoculum. In contrast, sequences classified within orders of methanogens were low in abundance, making up only 0.47% and 1.04% of the sequences in the pH 6 and pH 7.5 reactors, respectively. Mass balance calculations demonstrate that the amount of electron donor consumed by each group varied considerably between the sets of reactors. Expressed as a quantity of acetate, the reactions consumed about 160μM of electron donor each in pH 6 reactors. In contrast, methanogenesis consumed over 30 times more electron donor than Fe(III) reduction in the pH 7.5 reactors. Thus, the results of our experiment indicate that the decrease in electron donor consumption by Fe(III) reduction at basic pH was nearly matched by the increase in electron donor consumption by methanogens. Results of geochemical modeling calculations indicate that more energy was available for Fe(III) reduction in the pH 6.0 reactors than the pH 7.5 reactors, matching variation in Fe(III) reduction rates, and that the density of sorbed ferrous iron was higher in pH 6 reactors than pH 7.5 reactors. Thus, the calculation results are consistent with bioenergetics, but not variation in ferrous iron sorption, as a potential mechanism driving variation in the balance between each reaction with pH.
Kawai, Shota. "Studies on Electron Transfer Pathway and Characterization of Direct Electron Transfer-Type Bioelectrocatalysis of Fructose Dehydrogenase". Kyoto University, 2015. http://hdl.handle.net/2433/199346.
Testo completo0048
新制・課程博士
博士(農学)
甲第19022号
農博第2100号
新制||農||1030(附属図書館)
学位論文||H27||N4904(農学部図書室)
31973
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 加納 健司, 教授 阪井 康能, 教授 小川 順
学位規則第4条第1項該当
Ho, Wah On. "Direct electron transfer peroxidase enzyme electrodes and their application to electrochemical immunoassay". Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384829.
Testo completoKamitaka, Yuji. "Characterization of biofuel cells based on direct electron transfer reaction between enzymes and electrodes". Kyoto University, 2007. http://hdl.handle.net/2433/136521.
Testo completo0048
新制・課程博士
博士(農学)
甲第13102号
農博第1607号
新制||農||939(附属図書館)
学位論文||H19||N4228(農学部図書室)
UT51-2007-H375
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 加納 健司, 教授 植田 和光, 教授 宮川 恒
学位規則第4条第1項該当
Hibino, Yuya. "Improvement of direct electron transfer-type bioelectrocatalytic property of D-fructose dehydrogenase by protein engineering approach". Kyoto University, 2019. http://hdl.handle.net/2433/242713.
Testo completo0048
新制・課程博士
博士(農学)
甲第21836号
農博第2349号
新制||農||1068(附属図書館)
学位論文||H31||N5208(農学部図書室)
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 加納 健司, 教授 三芳 秀人, 教授 三上 文三
学位規則第4条第1項該当
Wanibuchi, Mizue. "Three-dimensional Structural Effects of Porous Materials on the Direct-electron-transfer-type Bioelectrocatalysis of Bilirubin Oxidase". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263704.
Testo completoSugimoto, Yu. "Development of Electrostatic and Three-Dimensional Random Orientation Models for Enzyme-Electrode Interfaces in Direct Electron Transfer-Type Bioelectrocatalysis". 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225651.
Testo completo0048
新制・課程博士
博士(農学)
甲第20426号
農博第2211号
新制||農||1048(附属図書館)
学位論文||H29||N5047(農学部図書室)
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 加納 健司, 教授 植田 充美, 教授 三上 文三
学位規則第4条第1項該当
Schach, Denise [Verfasser]. "Direct electron transfer to cytochrome c oxidase investigated by electrochemistry and time-resolved surface-enhanced infrared absorption spectroscopy / Denise Schach". Mainz : Universitätsbibliothek Mainz, 2011. http://d-nb.info/102008264X/34.
Testo completoHong-Qi, Xia. "Improvement of the Performance of Direct Electron Transfer-Type Bioelectrocatalysis Based on the Understanding of the Interaction between Redox Enzymes and Electrodes". Kyoto University, 2017. http://hdl.handle.net/2433/227638.
Testo completoWang, Tingting. "The Electrochemical and Spectroscopic Characterization of Carbon Nanotube Materials and The Development of Multiple Electrochemical Sensors". University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439308985.
Testo completoLibri sul tema "Direct interspecies electron transfer"
Larsson, Ted. Direct Electron Transfer Between Cellobiose Dehydrogenase and Solid Metal or Graphite Electrodes. Uppsala Universitet, 1999.
Cerca il testo completoUnited States. National Aeronautics and Space Administration., a cura di. Direct coupling of microbore HPLC columns to MS systems. [Washington, DC: National Aeronautics and Space Administration, 1985.
Cerca il testo completoCapitoli di libri sul tema "Direct interspecies electron transfer"
Zhao, Cuiping, e Yuchen Liu. "Direct Interspecies Electron Transfer Between Archaea and Bacteria". In Biocommunication of Archaea, 27–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65536-9_3.
Testo completoDubé, Charles-David, e Serge R. Guiot. "Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review". In Biogas Science and Technology, 101–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21993-6_4.
Testo completoLudwig, Roland. "Direct Electron Transfer to Enzymes". In Encyclopedia of Applied Electrochemistry, 330–35. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_258.
Testo completoYagi, T., e M. Ogata. "Electron Carrier Proteins in Desulfovibrio Vulgaris Miyazaki". In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, 237–48. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0613-9_21.
Testo completoHolzwarth, Alfred R., Marc G. Müller, Chavdar Slavov, Rajiv Luthra e Kevin Redding. "Ultrafast Energy and Electron Transfer in Photosystem I - Direct Evidence for two-branched Electron Transfer". In Ultrafast Phenomena XV, 471–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_152.
Testo completoHaladjian, J., P. Bianco, F. Guerlesquin, M. Bruschi, V. Nivière e C. Hatchikian. "Kinetic studies of electron transfer between hydrogenase and cytochrome c3 by electrochemistry". In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, 515–17. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0613-9_74.
Testo completoXu, Hui, Yanbiao Liu, Bo Yang, Ruihong Wei, Fang Li e Sand Wolfgang. "Role of Interspecies Electron Transfer for Boosting Methane Production by Anaerobic Digestion in Syntrophic Methanogenesis". In Combined Application of Physico-Chemical & Microbiological Processes for Industrial Effluent Treatment Plant, 65–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0497-6_5.
Testo completoUnderwood, David F., e David A. Blank. "Direct Probing of the Local Solvent Response During Intermolecular Electron Transfer". In Ultrafast Phenomena XV, 362–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_117.
Testo completoJohnson, A. E., N. E. Levinger, G. C. Walker e P. F. Barbara. "Ultrafast Studies and Simulations on Direct Photoinduced Electron Transfer in the Betaines". In Ultrafast Phenomena VIII, 576–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84910-7_184.
Testo completoFalk, Magnus, Dmitry Pankratov, Zoltan Blum e Sergey Shleev. "Direct-Electron-Transfer-Based Enzymatic Fuel CellsIn Vitro,Ex Vivo, andIn Vivo". In Implantable Bioelectronics, 315–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527673148.ch15.
Testo completoAtti di convegni sul tema "Direct interspecies electron transfer"
Holzwarth, Alfred R., Marc G. Müller, Chavdar Slavov, Rajiv Luthra e Kevin Redding. "Ultrafast energy and electron transfer in Photosystem I Direct evidence for two-branched electron transfer". In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/up.2006.tua3.
Testo completoKulkarni, Tanmay, Alex Holtschneider, Ressa Reneth Sarreal e Gymama Slaughter. "Dynamic modeling of direct electron transfer PQQ-GDH MWCNTs bioanode function". In 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2017. http://dx.doi.org/10.1109/nems.2017.8017046.
Testo completoGhassemi, Zahra, e Gymama Slaughter. "Dynamic modeling of direct electron transfer PQQ-GDH MWCNTs bioanode function". In 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2017. http://dx.doi.org/10.1109/nems.2017.8017047.
Testo completoUnderwood, David F., e David A. Blank. "Direct Probing of the Local Solvent Response During Intermolecular Electron Transfer". In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/up.2006.me8.
Testo completoCerullo, G., G. Lanzani, S. De Silvestri, C. J. Brabec, G. Zerza, N. S. Sariciftci e J. C. Hummelen. "Direct observation of the ultrafast electron transfer process in a polymer/fullerene blend". In Conference Digest. 2000 International Quantum Electronics Conference. IEEE, 2000. http://dx.doi.org/10.1109/iqec.2000.908203.
Testo completoBrabec, Ch J., G. Zerza, N. S. Sariciftci, G. Cerullo, G. Lanzani, S. De Silvestri e J. C. Hummelen. "Direct observation of the ultrafast electron transfer process in a polymer/fullerene blend". In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/up.2000.tha3.
Testo completoZeng, Taofang. "Direct Power Generation Using Tunneling and Thermionic Emission". In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56724.
Testo completoLiu, Fang, Xiaoyang Zhu e Qiuyang Li. "DIRECT DETERMINATION OF MOMENTUM-RESOLVED ELECTRON TRANSFER IN PHOTOEXCITED MoS2/WS2 VAN DER WAALS HETEROBILAYER". In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.ra04.
Testo completoPakapongpan, Saithip, Adisorn Tuantranont e Pornpimol Sritongkham. "Cholesterol biosensor based on direct electron transfer of cholesterol oxidase on multi-wall carbon nanotubes". In 2011 Biomedical Engineering International Conference (BMEiCON) - Conference postponed to 2012. IEEE, 2012. http://dx.doi.org/10.1109/bmeicon.2012.6172037.
Testo completoDey, Amrita, Alexander F. Richter, Tushar Debnath, He Huang, Lakshminarayan Polavarapu e Jochen Feldmann. "Transfer of Direct to Indirect Bound Excitons by Electron Intervalley Scattering in Cs2AgBiBr6 Double Perovskite Nanocrystals". In Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.021.
Testo completoRapporti di organizzazioni sul tema "Direct interspecies electron transfer"
Blackburn, Gary. Final Report: Direct Detection of Biological Microorganisms Based on Electron Transfer through DNA, September 1, 1995 - July 8, 1998. Office of Scientific and Technical Information (OSTI), luglio 1998. http://dx.doi.org/10.2172/765742.
Testo completo