Letteratura scientifica selezionata sul tema "Domain translation"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Domain translation".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Domain translation"
Li, Rumeng, Xun Wang e Hong Yu. "MetaMT, a Meta Learning Method Leveraging Multiple Domain Data for Low Resource Machine Translation". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 05 (3 aprile 2020): 8245–52. http://dx.doi.org/10.1609/aaai.v34i05.6339.
Testo completoDjebaili, Baya. "ترجمة النص المالي". Traduction et Langues 14, n. 1 (31 agosto 2015): 243–54. http://dx.doi.org/10.52919/translang.v14i1.787.
Testo completoMarie, Benjamin, e Atsushi Fujita. "Synthesizing Parallel Data of User-Generated Texts with Zero-Shot Neural Machine Translation". Transactions of the Association for Computational Linguistics 8 (novembre 2020): 710–25. http://dx.doi.org/10.1162/tacl_a_00341.
Testo completoXiang, Cailing. "Study on the Effectiveness of ChatGPT in Translating Forestry Sci-tech Texts". International Journal of Linguistics, Literature and Translation 7, n. 9 (29 agosto 2024): 88–94. http://dx.doi.org/10.32996/ijllt.2024.7.9.11.
Testo completoSokolova, Natalia. "Machine vs Human Translation in the Synergetic Translation Space". Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 2. Jazykoznanije, n. 6 (febbraio 2021): 89–98. http://dx.doi.org/10.15688/jvolsu2.2021.6.8.
Testo completoYin, Xu, Yan Li e Byeong-Seok Shin. "DAGAN: A Domain-Aware Method for Image-to-Image Translations". Complexity 2020 (28 marzo 2020): 1–15. http://dx.doi.org/10.1155/2020/9341907.
Testo completoBernaerts, Lars, Liesbeth De Bleeker e July De Wilde. "Narration and translation". Language and Literature: International Journal of Stylistics 23, n. 3 (31 luglio 2014): 203–12. http://dx.doi.org/10.1177/0963947014536504.
Testo completoDai, Diwei. "A Study on Application of Construal Theory in English Translation of Chinese Medical book: take English Translation of Jin Gui Yao Liao as an Example". International Journal of Public Health and Medical Research 1, n. 1 (25 marzo 2024): 20–28. http://dx.doi.org/10.62051/ijphmr.v1n1.03.
Testo completoKaratsiolis, Savvas, Christos N. Schizas e Nicolai Petkov. "Modular domain-to-domain translation network". Neural Computing and Applications 32, n. 11 (26 luglio 2019): 6779–91. http://dx.doi.org/10.1007/s00521-019-04358-8.
Testo completoMarie, Benjamin, e Atsushi Fujita. "Phrase Table Induction Using In-Domain Monolingual Data for Domain Adaptation in Statistical Machine Translation". Transactions of the Association for Computational Linguistics 5 (dicembre 2017): 487–500. http://dx.doi.org/10.1162/tacl_a_00075.
Testo completoTesi sul tema "Domain translation"
Brunello, Marco. "Domain and genre dependency in Statistical Machine Translation". Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8420/.
Testo completoMayet, Tsiry. "Multi-domain translation in a semi-supervised setting". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR46.
Testo completoThis thesis explores multi-modal generation and semi-supervised learning, addressing two critical challenges: supporting flexible configurations of input and output across multiple domains, and developing efficient training strategies for semi-supervised data settings. As artificial intelligence systems advance, there is growing need for models that can flexibly integrate and generate multiple modalities, mirroring human cognitive abilities. Conventional deep learning systems often struggle when deviating from their training configuration, which occurs when certain modalities are unavailable in real-world applications. For instance, in medical settings, patients might not undergo all possible scans for a comprehensive analysis system. Additionally, obtaining finer control over generated modalities is crucial for enhancing generation capabilities and providing richer contextual information. As the number of domains increases, obtaining simultaneous supervision across all domains becomes increasingly challenging. We focus on multi-domain translation in a semi-supervised setting, extending the classical domain translation paradigm. Rather than addressing specific translation directions or limiting translations to domain pairs, we develop methods facilitating translations between any possible domain configurations, determined at test time. The semi-supervised aspect reflects real-world scenarios where complete data annotation is often infeasible or prohibitively expensive. Our work explores three main areas: (1) studying latent space regularization functions to enhance domain translation learning with limited supervision, (2) examining the scalability and flexibility of diffusion-based translation models, and (3) improving the generation speed of diffusion-based inpainting models. First, we propose LSM, a semi-supervised translation framework leveraging additional input and structured output data to regularize inter-domain and intra-domain dependencies. Second, we develop MDD, a novel diffusion-based multi-domain translation semi-supervised framework. MDD shifts the classical reconstruction loss of diffusion models to a translation loss by modeling different noise levels per domain. The model leverages less noisy domains to reconstruct noisier ones, modeling missing data from the semi-supervised setting as pure noise and enabling flexible configuration of condition and target domains. Finally, we introduce TD-Paint, a novel diffusion-based inpainting model improving generation speed and reducing computational burden. Through investigation of the generation sampling process, we observe that diffusion-based inpainting models suffer from unsynchronized generation and conditioning. Existing models often rely on resampling steps or additional regularization losses to realign condition and generation, increasing time and computational complexity. TD-Paint addresses this by modeling variable noise levels at the pixel level, enabling efficient use of the condition from the generation onset
Wu, Fei. "An online domain-based Portuguese-Chinese machine translation system". Thesis, University of Macau, 1999. http://umaclib3.umac.mo/record=b1636999.
Testo completoChinea, Ríos Mara. "Advanced techniques for domain adaptation in Statistical Machine Translation". Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/117611.
Testo completo[CAT] La Traducció Automàtica Estadística és un sup-camp de la lingüística computacional que investiga com emprar els ordinadors en el procés de traducció d'un text d'un llenguatge humà a un altre. La traducció automàtica estadística és l'enfocament més popular que s'empra per a construir aquests sistemes de traducció automàtics. La qualitat d'aquests sistemes depèn en gran mesura dels exemples de traducció que s'empren durant els processos d'entrenament i adaptació dels models. Els conjunts de dades emprades són obtinguts a partir d'una gran varietat de fonts i en molts casos pot ser que no tinguem a mà les dades més adequades per a un domini específic. Donat aquest problema de manca de dades, la idea principal per a solucionar-ho és trobar aquells conjunts de dades més adequades per a entrenar o adaptar un sistema de traducció. En aquest sentit, aquesta tesi proposa un conjunt de tècniques de selecció de dades que identifiquen les dades bilingües més rellevants per a una tasca extrets d'un gran conjunt de dades. Com a primer pas en aquesta tesi, les tècniques de selecció de dades són aplicades per a millorar la qualitat de la traducció dels sistemes de traducció sota el paradigma basat en frases. Aquestes tècniques es basen en el concepte de representació contínua de les paraules o les oracions en un espai vectorial. Els resultats experimentals demostren que les tècniques utilitzades són efectives per a diferents llenguatges i dominis. El paradigma de Traducció Automàtica Neuronal també va ser aplicat en aquesta tesi. Dins d'aquest paradigma, investiguem l'aplicació que poden tenir les tècniques de selecció de dades anteriorment validades en el paradigma basat en frases. El treball realitzat es va centrar en la utilització de dues tasques diferents. D'una banda, investiguem com augmentar la qualitat de traducció del sistema, augmentant la grandària del conjunt d'entrenament. D'altra banda, el mètode de selecció de dades es va emprar per a crear un conjunt de dades sintètiques. Els experiments es van realitzar per a diferents dominis i els resultats de traducció obtinguts són convincents per a ambdues tasques. Finalment, cal assenyalar que les tècniques desenvolupades i presentades al llarg d'aquesta tesi poden implementar-se fàcilment dins d'un escenari de traducció real.
[EN] La Traducció Automàtica Estadística és un sup-camp de la lingüística computacional que investiga com emprar els ordinadors en el procés de traducció d'un text d'un llenguatge humà a un altre. La traducció automàtica estadística és l'enfocament més popular que s'empra per a construir aquests sistemes de traducció automàtics. La qualitat d'aquests sistemes depèn en gran mesura dels exemples de traducció que s'empren durant els processos d'entrenament i adaptació dels models. Els conjunts de dades emprades són obtinguts a partir d'una gran varietat de fonts i en molts casos pot ser que no tinguem a mà les dades més adequades per a un domini específic. Donat aquest problema de manca de dades, la idea principal per a solucionar-ho és trobar aquells conjunts de dades més adequades per a entrenar o adaptar un sistema de traducció. En aquest sentit, aquesta tesi proposa un conjunt de tècniques de selecció de dades que identifiquen les dades bilingües més rellevants per a una tasca extrets d'un gran conjunt de dades. Com a primer pas en aquesta tesi, les tècniques de selecció de dades són aplicades per a millorar la qualitat de la traducció dels sistemes de traducció sota el paradigma basat en frases. Aquestes tècniques es basen en el concepte de representació contínua de les paraules o les oracions en un espai vectorial. Els resultats experimentals demostren que les tècniques utilitzades són efectives per a diferents llenguatges i dominis. El paradigma de Traducció Automàtica Neuronal també va ser aplicat en aquesta tesi. Dins d'aquest paradigma, investiguem l'aplicació que poden tenir les tècniques de selecció de dades anteriorment validades en el paradigma basat en frases. El treball realitzat es va centrar en la utilització de dues tasques diferents d'adaptació del sistema. D'una banda, investiguem com augmentar la qualitat de traducció del sistema, augmentant la grandària del conjunt d'entrenament. D'altra banda, el mètode de selecció de dades es va emprar per a crear un conjunt de dades sintètiques. Els experiments es van realitzar per a diferents dominis i els resultats de traducció obtinguts són convincents per a ambdues tasques. Finalment, cal assenyalar que les tècniques desenvolupades i presentades al llarg d'aquesta tesi poden implementar-se fàcilment dins d'un escenari de traducció real.
Chinea Ríos, M. (2019). Advanced techniques for domain adaptation in Statistical Machine Translation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/117611
TESIS
Farajian, Mohammad Amin. "Online Adaptive Neural Machine Translation: from single- to multi-domain scenarios". Doctoral thesis, Università degli studi di Trento, 2018. https://hdl.handle.net/11572/367944.
Testo completoFarajian, Mohammad Amin. "Online Adaptive Neural Machine Translation: from single- to multi-domain scenarios". Doctoral thesis, University of Trento, 2018. http://eprints-phd.biblio.unitn.it/2921/1/PhD_Thesis_Amin.pdf.
Testo completoMansour, Saab Verfasser], Hermann [Akademischer Betreuer] [Ney e Khalil [Akademischer Betreuer] Sima'an. "Domain adaptation for statistical machine translation / Saab Mansour ; Hermann Ney, Khalil Sima'an". Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1170780180/34.
Testo completoLaranjeira, Bruno Rezende. "On the application of focused crawling for statistical machine translation domain adaptation". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/117259.
Testo completoStatistical Machine Translation (SMT) is highly dependent on the availability of parallel corpora for training. However, these kinds of resource may be hard to be found, especially when dealing with under-resourced languages or very specific domains, like the dermatology. For working this situation around, one possibility is the use of comparable corpora, which are much more abundant resources. One way of acquiring comparable corpora is to apply Focused Crawling (FC) algorithms. In this work we propose novel approach for FC algorithms, some based on n-grams and other on the expressive power of multiword expressions. We also assess the viability of using FC for performing domain adaptations for generic SMT systems and whether there is a correlation between the quality of the FC algorithms and of the SMT systems that can be built with its collected data. Results indicate that the use of FCs is, indeed, a good way for acquiring comparable corpora for SMT domain adaptation and that there is a correlation between the qualities of both processes.
Mansour, Saab [Verfasser], Hermann [Akademischer Betreuer] Ney e Khalil [Akademischer Betreuer] Sima'an. "Domain adaptation for statistical machine translation / Saab Mansour ; Hermann Ney, Khalil Sima'an". Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1170780180/34.
Testo completoPizzati, Fabio <1993>. "Exploring domain-informed and physics-guided learning in image-to-image translation". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10499/1/pizzati_fabio_tesi.pdf.
Testo completoLibri sul tema "Domain translation"
Kaźmierczak, Marta. Przekład w kręgu intertekstualności: Na materiale tłumaczeń poezji Bolesława Leśmiana = [Perevod v krugu intertekstualʹnosti] = Translation in the domain of intertextuality. Warszawa: Instytut Lingwistyki Stosowanej Uniwersytetu Warszawskiego, 2012.
Cerca il testo completoYŏn'guwŏn, Han'guk Chŏnja T'ongsin. Ŭngyong t'ŭkhwa Han-Chung-Yŏng chadong pŏnyŏk kisul kaebal e kwanhan yŏn'gu =: Domain customized machine translation technology development for Korean, Chinese, English. [Kyŏnggi-do Kwach'ŏn-si]: Chisik Kyŏngjebu, 2009.
Cerca il testo completoGarzone, G. Domain-specific English and language mediation in professional and institutional settings. Milano: Arcipelago, 2003.
Cerca il testo completoMontgomery, L. M. Le Domaine des peupliers. Montréal: Québec/Amérique, 1994.
Cerca il testo completo1939-, Memon Muhammad Umar, a cura di. Domains of fear and desire: Urdu stories. Toronto, Ontario: TSAR, 1992.
Cerca il testo completo1949-, Rioux Hélène, a cura di. Anne au Domaine des Peupliers. Charlottetown, P.E.I: Ragweed Press, 1989.
Cerca il testo completoMontgomery, L. M. Anne au Domaine des peupliers: Roman. Charlottetown, Î.-P.-É: Ragweed Press, 1989.
Cerca il testo completoMontgomery, L. M. Anne au Domaine des peupliers: Roman. Montréal: Québec/Amérique, 1989.
Cerca il testo completoHaroutyunian, Sona, e Dario Miccoli. Orienti migranti: tra letteratura e traduzione. Venice: Fondazione Università Ca’ Foscari, 2020. http://dx.doi.org/10.30687/978-88-6969-499-8.
Testo completoA, Constas Mark, e Sternberg Robert J, a cura di. Translating theory and research into educational practice: Developments in content domains, large scale reform, and intellectual capacity. Mahwah, NJ: Lawrence Erlbaum Associates, 2006.
Cerca il testo completoCapitoli di libri sul tema "Domain translation"
Karatsiolis, Savvas, Christos N. Schizas e Nicolai Petkov. "Modular Domain-to-Domain Translation Network". In Artificial Neural Networks and Machine Learning – ICANN 2018, 425–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01424-7_42.
Testo completoKatzir, Oren, Dani Lischinski e Daniel Cohen-Or. "Cross-Domain Cascaded Deep Translation". In Computer Vision – ECCV 2020, 673–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58536-5_40.
Testo completoNoordman, Leo G. M., Wietske Vonk e Wim H. G. Simons. "Knowledge representation in the domain of economics". In Text, Translation, Computational Processing, 235–60. Berlin, New York: DE GRUYTER MOUTON, 2000. http://dx.doi.org/10.1515/9783110826005.235.
Testo completoSperanza, Giulia, e Johanna Monti. "Chapter 3. Evaluating the Italian-English machine translation quality of MWUs in the domain of archaeology". In Current Issues in Linguistic Theory, 40–56. Amsterdam: John Benjamins Publishing Company, 2024. http://dx.doi.org/10.1075/cilt.366.03spe.
Testo completoLivbjerg, Inge, e Inger M. Mees. "Patterns of dictionary use in non-domain-specific translation". In Benjamins Translation Library, 123–36. Amsterdam: John Benjamins Publishing Company, 2003. http://dx.doi.org/10.1075/btl.45.11liv.
Testo completoBiggerstaff, Ted J. "Control Localization in Domain Specific Translation". In Software Reuse: Methods, Techniques, and Tools, 153–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46020-9_11.
Testo completoMurez, Zak, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi e Kyungnam Kim. "Domain Adaptation via Image to Image Translation". In Domain Adaptation in Computer Vision with Deep Learning, 117–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45529-3_7.
Testo completoSapiro, Gisèle. "The Sociology of Translation: A New Research Domain". In A Companion to Translation Studies, 82–94. Oxford, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118613504.ch6.
Testo completoRoyer, Amélie, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar Mosseri, Forrester Cole e Kevin Murphy. "XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings". In Domain Adaptation for Visual Understanding, 33–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30671-7_3.
Testo completoYang, Manzhi, Huaping Zhang, Chenxi Yu e Guotong Geng. "Continual Domain Adaption for Neural Machine Translation". In Communications in Computer and Information Science, 427–39. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8145-8_33.
Testo completoAtti di convegni sul tema "Domain translation"
Hendy, Amr, Mohamed Abdelghaffar, Mohamed Afify e Ahmed Y. Tawfik. "Domain Specific Sub-network for Multi-Domain Neural Machine Translation". In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 351–56. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.aacl-short.43.
Testo completoYou, WangJie, Pei Guo, Juntao Li, Kehai Chen e Min Zhang. "Efficient Domain Adaptation for Non-Autoregressive Machine Translation". In Findings of the Association for Computational Linguistics ACL 2024, 13657–70. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-acl.810.
Testo completoBhattacharjee, Soham, Baban Gain e Asif Ekbal. "Domain Dynamics: Evaluating Large Language Models in English-Hindi Translation". In Proceedings of the Ninth Conference on Machine Translation, 341–54. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.wmt-1.27.
Testo completoHu, Tianxiang, Pei Zhang, Baosong Yang, Jun Xie, Derek F. Wong e Rui Wang. "Large Language Model for Multi-Domain Translation: Benchmarking and Domain CoT Fine-tuning". In Findings of the Association for Computational Linguistics: EMNLP 2024, 5726–46. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.328.
Testo completoLuo, Yuanchang, Zhanglin Wu, Daimeng Wei, Hengchao Shang, Zongyao Li, Jiaxin Guo, Zhiqiang Rao et al. "Multilingual Transfer and Domain Adaptation for Low-Resource Languages of Spain". In Proceedings of the Ninth Conference on Machine Translation, 949–54. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.wmt-1.93.
Testo completoVogel, Stephan. "Speech-translation: from domain-limited to domain-unlimited translation tasks". In 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU). IEEE, 2007. http://dx.doi.org/10.1109/asru.2007.4430141.
Testo completoLin, Jianxin, Yingce Xia, Yijun Wang, Tao Qin e Zhibo Chen. "Image-to-Image Translation with Multi-Path Consistency Regularization". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/413.
Testo completoAla, Hema, Vandan Mujadia e Dipti Misra Sharma. "Domain Adaptation for Hindi-Telugu Machine Translation using Domain Specific Back Translation". In International Conference Recent Advances in Natural Language Processing. INCOMA Ltd. Shoumen, BULGARIA, 2021. http://dx.doi.org/10.26615/978-954-452-072-4_004.
Testo completoSokova, Daria, e Cristina Toledo-Báez. "Linguistic Complexity in Domain-Specific Neural Machine Translation". In New Trends in Translation and Technology Conference 2024, 191–200. INCOMA Ltd. Shoumen, BULGARIA, 2024. http://dx.doi.org/10.26615/issn.2815-4711.2024_015.
Testo completoWei, Hao-Ran, Zhirui Zhang, Boxing Chen e Weihua Luo. "Iterative Domain-Repaired Back-Translation". In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.emnlp-main.474.
Testo completoRapporti di organizzazioni sul tema "Domain translation"
Micher, Jeffrey C. Improving Domain-specific Machine Translation by Constraining the Language Model. Fort Belvoir, VA: Defense Technical Information Center, luglio 2012. http://dx.doi.org/10.21236/ada568649.
Testo completoLavoie, Benoit, Michael White e Tanya Korelsky. Learning Domain-Specific Transfer Rules: An Experiment with Korean to English Translation. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2002. http://dx.doi.org/10.21236/ada457732.
Testo completoShaver, Amber, Hayam Megally, Sean Boynes, Tooka Zokaie, Nithya Puttige Ramesh, Don Clermont e Annaliese Cothron. Illustrating the Role of Dental Journals in the Translational Science Process. American Institute of Dental Public Health, 2022. http://dx.doi.org/10.58677/pqbg1492.
Testo completoKriegel, Francesco. Learning General Concept Inclusions in Probabilistic Description Logics. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.220.
Testo completoChejanovsky, Nor, e Suzanne M. Thiem. Isolation of Baculoviruses with Expanded Spectrum of Action against Lepidopteran Pests. United States Department of Agriculture, dicembre 2002. http://dx.doi.org/10.32747/2002.7586457.bard.
Testo completoRogers, Aaron. Translational Fidelity of a Eukaryotic Glutaminyl-tRNA Synthetase with an N-terminal Domain Appendage. Portland State University Library, gennaio 2000. http://dx.doi.org/10.15760/etd.2005.
Testo completoPaule, Bernard, Flourentzos Flourentzou, Tristan de KERCHOVE d’EXAERDE, Julien BOUTILLIER e Nicolo Ferrari. PRELUDE Roadmap for Building Renovation: set of rules for renovation actions to optimize building energy performance. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541614638.
Testo completoChristopher, David A., e Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, maggio 2004. http://dx.doi.org/10.32747/2004.7586534.bard.
Testo completoOhad, Nir, e Robert Fischer. Regulation of Fertilization-Independent Endosperm Development by Polycomb Proteins. United States Department of Agriculture, gennaio 2004. http://dx.doi.org/10.32747/2004.7695869.bard.
Testo completoMcClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon e R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, ottobre 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Testo completo