Articoli di riviste sul tema "Fibrils"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Fibrils".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Hagg, Rupert, Peter Bruckner, and Erik Hedbom. "Cartilage Fibrils of Mammals are Biochemically Heterogeneous: Differential Distribution of Decorin and Collagen IX." Journal of Cell Biology 142, no. 1 (1998): 285–94. http://dx.doi.org/10.1083/jcb.142.1.285.
Testo completoKarunarathne, Kanchana, Nabila Bushra, Olivia Williams, et al. "Self-Assembly of Amyloid Fibrils Into 3D Gel Clusters Versus 2D Sheets." Biomolecules 13, no. 2 (2023): 230. http://dx.doi.org/10.3390/biom13020230.
Testo completoMurvai, Ünige, Judit Somkuti, László Smeller, Botond Penke та Miklós SZ Kellermayer. "Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils." Biochim Biophys Acta. 1854, № 5 (2015): 327–32. https://doi.org/10.1016/j.bbapap.2015.01.003.
Testo completoLiu, Yehe, Nelly Andarawis-Puri, and Steven J. Eppell. "Method to extract minimally damaged collagen fibrils from tendon." Journal of Biological Methods 3, no. 4 (2016): e54. http://dx.doi.org/10.14440/jbm.2016.121.
Testo completoMilton, Nathaniel G. N., and J. Robin Harris. "Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study." Scientific World JOURNAL 10 (2010): 879–93. http://dx.doi.org/10.1100/tsw.2010.73.
Testo completoCarapeto, Ana P., Carlos Marcuello, Patrícia F. N. Faísca, and Mário S. Rodrigues. "Morphological and Biophysical Study of S100A9 Protein Fibrils by Atomic Force Microscopy Imaging and Nanomechanical Analysis." Biomolecules 14, no. 9 (2024): 1091. http://dx.doi.org/10.3390/biom14091091.
Testo completoPradhan, Tejaswini, Karthikeyan Annamalai, Riddhiman Sarkar та ін. "Seeded fibrils of the germline variant of human λ-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability". Journal of Biological Chemistry 295, № 52 (2020): 18474–84. http://dx.doi.org/10.1074/jbc.ra120.016006.
Testo completoWinklbauer, R., and C. Stoltz. "Fibronectin fibril growth in the extracellular matrix of the Xenopus embryo." Journal of Cell Science 108, no. 4 (1995): 1575–86. http://dx.doi.org/10.1242/jcs.108.4.1575.
Testo completoKADLER, Karl E., David F. HOLMES, John A. TROTTER, and John A. CHAPMAN. "Collagen fibril formation." Biochemical Journal 316, no. 1 (1996): 1–11. http://dx.doi.org/10.1042/bj3160001.
Testo completoNakata, Yui, Yuuto Kitazaki, Hitomi Kanaoka, et al. "Formation of Fibrils by the Periplasmic Molecular Chaperone HdeB from Escherichia coli." International Journal of Molecular Sciences 23, no. 21 (2022): 13243. http://dx.doi.org/10.3390/ijms232113243.
Testo completoNoskov, Boris, Giuseppe Loglio, Reinhard Miller, Olga Milyaeva, Maria Panaeva та Alexey Bykov. "Dynamic Surface Properties of α-Lactalbumin Fibril Dispersions". Polymers 15, № 19 (2023): 3970. http://dx.doi.org/10.3390/polym15193970.
Testo completoTeangtam, Sarocha, Wissanee Yingprasert, and Phichit Somboon. "Production of micro-lignocellulosic fibril rubber composites and their application in coated layers of building materials." BioResources 19, no. 1 (2023): 620–34. http://dx.doi.org/10.15376/biores.19.1.620-634.
Testo completoLi, Jinqing, Zichao Yang, Han Liu, et al. "ADS-J1 disaggregates semen-derived amyloid fibrils." Biochemical Journal 476, no. 6 (2019): 1021–35. http://dx.doi.org/10.1042/bcj20180886.
Testo completoSandhya A, Gomathi Kanayiram, Kiruthika L, and Aafreen Afroz S. "Nigella Sativa : A Potential Inhibitor for Insulin Fibril Formation." International Journal of Research in Pharmaceutical Sciences 11, no. 1 (2020): 765–74. http://dx.doi.org/10.26452/ijrps.v11i1.1891.
Testo completoAnan, Intissar, Ole B. Suhr, Katarzyna Liszewska, et al. "Amyloid fibril composition type is consistent over time in patients with Val30Met (p.Val50Met) transthyretin amyloidosis." PLOS ONE 17, no. 3 (2022): e0266092. http://dx.doi.org/10.1371/journal.pone.0266092.
Testo completoBehnke, O. "Platelet Adhesion to Native Collagens Involves Proteoglycans and May Be a Two-Step Process." Thrombosis and Haemostasis 58, no. 02 (1987): 786–89. http://dx.doi.org/10.1055/s-0038-1645970.
Testo completoSelivanova, O. M., V. V. Rogachevsky, A. K. Syrin, and O. V. Galzitskaya. "Molecular mechanism of amyloid formation by Ab peptide: review of own works." Biomeditsinskaya Khimiya 64, no. 1 (2018): 94–109. http://dx.doi.org/10.18097/pbmc20186401094.
Testo completoGalzitskaya, Oxana. "New Mechanism of Amyloid Fibril Formation." Current Protein & Peptide Science 20, no. 6 (2019): 630–40. http://dx.doi.org/10.2174/1389203720666190125160937.
Testo completoBirk, D. E., J. M. Fitch, J. P. Babiarz, and T. F. Linsenmayer. "Collagen type I and type V are present in the same fibril in the avian corneal stroma." Journal of Cell Biology 106, no. 3 (1988): 999–1008. http://dx.doi.org/10.1083/jcb.106.3.999.
Testo completoKang, Ning, Jin Hua, Lizhen Gao, Bin Zhang, and Jiewen Pang. "The Interplay between Whey Protein Fibrils with Carbon Nanotubes or Carbon Nano-Onions." Materials 14, no. 3 (2021): 608. http://dx.doi.org/10.3390/ma14030608.
Testo completoCheng, Qinghui, Zhi-Wen Hu, Yuto Tobin-Miyaji, Amy E. Perkins, Terrence Deak та Wei Qiang. "Fibrillization of 40-residue β-Amyloid Peptides in Membrane-Like Environments Leads to Different Fibril Structures and Reduced Molecular Polymorphisms". Biomolecules 10, № 6 (2020): 881. http://dx.doi.org/10.3390/biom10060881.
Testo completoNorris, Karl, Oksana Mishukova, Agata Zykwinska, et al. "Marine Polysaccharide-Collagen Coatings on Ti6Al4V Alloy Formed by Self-Assembly." Micromachines 10, no. 1 (2019): 68. http://dx.doi.org/10.3390/mi10010068.
Testo completoAgopian, Audrey, та Zhefeng Guo. "Structural origin of polymorphism of Alzheimer's amyloid β-fibrils". Biochemical Journal 447, № 1 (2012): 43–50. http://dx.doi.org/10.1042/bj20120034.
Testo completoPeters, Donna M. Pesciotta, Ya Chen, Luciano Zardi, and Sara Brummel. "Conformation of Fibronectin Fibrils Varies: Discrete Globular Domains of Type III Repeats Detected." Microscopy and Microanalysis 4, no. 4 (1998): 385–96. http://dx.doi.org/10.1017/s1431927698980369.
Testo completoWatanabe-Nakayama, Takahiro, Kenjiro Ono, Masahiro Itami, Ryoichi Takahashi, David B. Teplow та Masahito Yamada. "High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates". Proceedings of the National Academy of Sciences 113, № 21 (2016): 5835–40. http://dx.doi.org/10.1073/pnas.1524807113.
Testo completoGoh, K. L., J. R. Meakin, R. M. Aspden, and D. W. L. Hukins. "Influence of fibril taper on the function of collagen to reinforce extracellular matrix." Proceedings of the Royal Society B: Biological Sciences 272, no. 1575 (2005): 1979–83. http://dx.doi.org/10.1098/rspb.2005.3173.
Testo completoMarchant, J. K., R. A. Hahn, T. F. Linsenmayer, and D. E. Birk. "Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal-specific fibril morphology." Journal of Cell Biology 135, no. 5 (1996): 1415–26. http://dx.doi.org/10.1083/jcb.135.5.1415.
Testo completoCostello, Matt, Nina Park, Alyssa Neill, et al. "Cael-101 Enhances the Clearance of Light Chain Fibrils and Intermediate Aggregates By Phagocytosis." Blood 142, Supplement 1 (2023): 3307. http://dx.doi.org/10.1182/blood-2023-186373.
Testo completoSanami, Sarina, Tracey J. Purton, David P. Smith, Mick F. Tuite, and Wei-Feng Xue. "Comparative Analysis of the Relative Fragmentation Stabilities of Polymorphic Alpha-Synuclein Amyloid Fibrils." Biomolecules 12, no. 5 (2022): 630. http://dx.doi.org/10.3390/biom12050630.
Testo completoSanami, Sarina, Tracey J. Purton, David P. Smith, Mick F. Tuite, and Wei-Feng Xue. "Comparative Analysis of the Relative Fragmentation Stabilities of Polymorphic Alpha-Synuclein Amyloid Fibrils." Biomolecules 12, no. 5 (2022): 630. http://dx.doi.org/10.3390/biom12050630.
Testo completoSanami, Sarina, Tracey J. Purton, David P. Smith, Mick F. Tuite, and Wei-Feng Xue. "Comparative Analysis of the Relative Fragmentation Stabilities of Polymorphic Alpha-Synuclein Amyloid Fibrils." Biomolecules 12, no. 5 (2022): 630. http://dx.doi.org/10.3390/biom12050630.
Testo completoMosesson, MW, JP DiOrio, KR Siebenlist, JS Wall, and JF Hainfeld. "Evidence for a second type of fibril branch point in fibrin polymer networks, the trimolecular junction." Blood 82, no. 5 (1993): 1517–21. http://dx.doi.org/10.1182/blood.v82.5.1517.1517.
Testo completoMosesson, MW, JP DiOrio, KR Siebenlist, JS Wall, and JF Hainfeld. "Evidence for a second type of fibril branch point in fibrin polymer networks, the trimolecular junction." Blood 82, no. 5 (1993): 1517–21. http://dx.doi.org/10.1182/blood.v82.5.1517.bloodjournal8251517.
Testo completoChernii, Svitlana, Yuriy Gerasymchuk, Mykhaylo Losytskyy, et al. "Modification of insulin amyloid aggregation by Zr phthalocyanines functionalized with dehydroacetic acid derivatives." PLOS ONE 16, no. 1 (2021): e0243904. http://dx.doi.org/10.1371/journal.pone.0243904.
Testo completoGarrison, Carly M., and Jean E. Schwarzbauer. "Fibronectin fibril alignment is established upon initiation of extracellular matrix assembly." Molecular Biology of the Cell 32, no. 8 (2021): 739–52. http://dx.doi.org/10.1091/mbc.e20-08-0533.
Testo completoLiu, Yehe, Roberto Ballarini, and Steven J. Eppell. "Tension tests on mammalian collagen fibrils." Interface Focus 6, no. 1 (2016): 20150080. http://dx.doi.org/10.1098/rsfs.2015.0080.
Testo completoVaughan, L., M. Mendler, S. Huber, et al. "D-periodic distribution of collagen type IX along cartilage fibrils." Journal of Cell Biology 106, no. 3 (1988): 991–97. http://dx.doi.org/10.1083/jcb.106.3.991.
Testo completoMendler, M., S. G. Eich-Bender, L. Vaughan, K. H. Winterhalter, and P. Bruckner. "Cartilage contains mixed fibrils of collagen types II, IX, and XI." Journal of Cell Biology 108, no. 1 (1989): 191–97. http://dx.doi.org/10.1083/jcb.108.1.191.
Testo completoSaelices, Lorena, Kevin Chung, Ji H. Lee, et al. "Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition." Proceedings of the National Academy of Sciences 115, no. 29 (2018): E6741—E6750. http://dx.doi.org/10.1073/pnas.1805131115.
Testo completoBuell, Alexander K. "The growth of amyloid fibrils: rates and mechanisms." Biochemical Journal 476, no. 19 (2019): 2677–703. http://dx.doi.org/10.1042/bcj20160868.
Testo completoChai, Ya Dong, Zi Zhen Liu, Daichi Noda, and Motohiro Tagaya. "Mild Reaction of Highly-Oriented Collagen Fibril Arrays with Simulated Body Fluid." Solid State Phenomena 324 (September 20, 2021): 166–72. http://dx.doi.org/10.4028/www.scientific.net/ssp.324.166.
Testo completoKelly, Jeffery W., and William E. Balch. "Amyloid as a natural product." Journal of Cell Biology 161, no. 3 (2003): 461–62. http://dx.doi.org/10.1083/jcb.200304074.
Testo completoKaku, Toshisuke, Kaori Tsukakoshi та Kazunori Ikebukuro. "Cytotoxic Aβ Protofilaments Are Generated in the Process of Aβ Fibril Disaggregation". International Journal of Molecular Sciences 22, № 23 (2021): 12780. http://dx.doi.org/10.3390/ijms222312780.
Testo completoFichou, Yann, Yanxian Lin, Jennifer N. Rauch, et al. "Cofactors are essential constituents of stable and seeding-active tau fibrils." Proceedings of the National Academy of Sciences 115, no. 52 (2018): 13234–39. http://dx.doi.org/10.1073/pnas.1810058115.
Testo completoTonniges, Jeffrey R., Benjamin Albert, Edward P. Calomeni, et al. "Collagen Fibril Ultrastructure in Mice Lacking Discoidin Domain Receptor 1." Microscopy and Microanalysis 22, no. 3 (2016): 599–611. http://dx.doi.org/10.1017/s1431927616000787.
Testo completoSong, Zhiping, Jun Zhang, and Yue Fang. "Interactions between Filament Fibrils and a Network Field." Astrophysical Journal 943, no. 2 (2023): 114. http://dx.doi.org/10.3847/1538-4357/acaefc.
Testo completoKellermayer, Miklós SZ, Ünige Murvai, Andrea Horváth, Emöke Lászlóffi, Katalin Soós та Botond Penke. "Epitaxial assembly dynamics of mutant amyloid β25–35_N27C fibrils explored with time-resolved scanning force microscopy". Biophys Chem. 184C (5 вересня 2013): 54–61. https://doi.org/10.1016/j.bpc.2013.08.007.
Testo completoBirk, D. E., J. M. Fitch, J. P. Babiarz, K. J. Doane, and T. F. Linsenmayer. "Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter." Journal of Cell Science 95, no. 4 (1990): 649–57. http://dx.doi.org/10.1242/jcs.95.4.649.
Testo completoLi, Yan, Yang Yu та Gang Ma. "Modulation Effects of Fe3+, Zn2+, and Cu2+ Ions on the Amyloid Fibrillation of α-Synuclein: Insights from a FTIR Investigation". Molecules 27, № 23 (2022): 8383. http://dx.doi.org/10.3390/molecules27238383.
Testo completoKadler, K. E., Y. Hojima, and D. J. Prockop. "Collagen fibrils in vitro grow from pointed tips in the C- to N-terminal direction." Biochemical Journal 268, no. 2 (1990): 339–43. http://dx.doi.org/10.1042/bj2680339.
Testo completo