Segui questo link per vedere altri tipi di pubblicazioni sul tema: Finite element modelling.

Articoli di riviste sul tema "Finite element modelling"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Finite element modelling".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Kumar, Anil, Anil kumar chhotu, Ghausul Azam Ansari, Md Arman Ali, Abhishek kumar, Rajk ishor, and Ashutosh kumar. "Finite Element Modelling of Corroded RC Flexural Elements." International Journal of Engineering Trends and Technology 71, no. 4 (April 25, 2023): 462–73. http://dx.doi.org/10.14445/22315381/ijett-v71i4p239.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Merodo, José Antonio Fernandez, and Manuel Pastor. "Finite Element Modelling of Landslides." Revue Française de Génie Civil 6, no. 6 (January 2002): 1193–212. http://dx.doi.org/10.1080/12795119.2002.9692739.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Ridley, P. H. W., G. W. Roberts, M. A. Wongsam, and R. W. Chantrell. "Finite element modelling of nanoelements." Journal of Magnetism and Magnetic Materials 193, no. 1-3 (March 1999): 423–26. http://dx.doi.org/10.1016/s0304-8853(98)00467-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Shinwari, M. W., M. J. Deen, and P. R. Selvaganapathy. "Finite-Element Modelling of Biotransistors." Nanoscale Research Letters 5, no. 3 (January 19, 2010): 494–500. http://dx.doi.org/10.1007/s11671-009-9522-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Carey, Graham F. "Parallelism in finite element modelling." Communications in Applied Numerical Methods 2, no. 3 (May 1986): 281–87. http://dx.doi.org/10.1002/cnm.1630020309.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Moskvichev, Egor. "Distribution of material properties in finite element models of inhomogeneous elements of structures." EPJ Web of Conferences 221 (2019): 01034. http://dx.doi.org/10.1051/epjconf/201922101034.

Testo completo
Abstract (sommario):
This paper discusses an approach to finite element modelling of structure elements considering material inhomogeneity. This approach is based on the functional dependence of mechanical properties on the spatial coordinates of finite elements. It allows modelling gradient transitions between different materials, which avoid stress discontinuities during strength analysis. The finite element models of cold formed angle, welded joint and thermal barrier coating, created by this method, have been presented.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Fernández Ruiz, M., G. Argirova, and A. Muttoni. "How simple can nonlinear finite element modelling be for structural concrete?" Informes de la Construcción 66, Extra-1 (December 30, 2014): m013. http://dx.doi.org/10.3989/ic.13.085.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Kukiełka, Leon, and Krzysztof Kukiełka. "Modelling and analysis of the technological processes using finite element method." Mechanik, no. 3 (March 2015): 195/317–195/340. http://dx.doi.org/10.17814/mechanik.2015.3.149.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Brůha, Jan, and Drahomír Rychecký. "Modelling of Rotating Twisted Blades as 1D Continuum." Applied Mechanics and Materials 821 (January 2016): 183–90. http://dx.doi.org/10.4028/www.scientific.net/amm.821.183.

Testo completo
Abstract (sommario):
Presented paper deals with modelling of a twisted blade with rhombic shroud as one-dimensional continuum by means of Rayleigh beam finite elements with varying cross-sectional parameters along the finite elements. The blade is clamped into a rotating rigid disk and the shroud is considered to be a rigid body. Since the finite element models based on the Rayleigh beam theory tend to slightly overestimate natural frequencies and underestimate deflections in comparison with finite element models including shear deformation effects, parameter tuning of the blade is performed.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Kushwaha, R. L. "FINITE ELEMENT MODELLING OF TILLAGE TOOL DESIGN." Transactions of the Canadian Society for Mechanical Engineering 17, no. 2 (June 1993): 257–69. http://dx.doi.org/10.1139/tcsme-1993-0016.

Testo completo
Abstract (sommario):
A non-linear finite element model was developed for three dimensional soil cutting by tillage tools. A hyperbolic constitutive relation for soil was used in the model. Analysis was carried out to simulate soil cutting with rectangular flat and triangular tillage blades at different rake angles and with curved blades. Interface elements were used to model the adhesion and the friction between soil and blade surface. Soil forces obtained from the finite element model for the straight blades were verified with the results from laboratory tillage tests in the soil bin. The finite element model predicted draft force accurately for both tillage tools. Results indicated that the draft was a function of rake angle, tool shape and the curvature.
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Chia, Julian Y. H., Kais Hbaieb, and Q. X. Wang. "Finite Element Modelling Epoxy/Clay Nanocomposites." Key Engineering Materials 334-335 (March 2007): 785–88. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.785.

Testo completo
Abstract (sommario):
A full 3D finite element method has been used to understand how nano-clay particles affect the mechanical properties of an epoxy/clay nanocomposite. The epoxy/clay nanocomposite has been modelled as a representative volume element (RVE) containing intercalated clay platelets that internally delaminates at the gallery layer upon satisfying an energy criterion, and an epoxy matrix that is elastic-plastic. A cohesive traction-displacement law is used to model the clay gallery behaviour until failure. For clay volume fractions >1%, clay particle interaction is observed to develop during uniaxial tension, the nanocomposite stiffness becomes non-linearly dependent on the clay volume fraction, and the Mori-Tanaka model overestimates the stiffness. Failure of the clay gallery is not observed and is believed to have no influence on the ultimate tensile strength of the nanocomposite.
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Jónás, Szabolcs, and Miklós Tisza. "Finite Element Modelling of Clinched Joints." Advanced Technologies & Materials 43, no. 1 (June 1, 2018): 1–6. http://dx.doi.org/10.24867/atm-2018-1-001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Bouziane, Salah, Hamoudi Bouzerd, and Mohamed Guenfoud. "Mixed finite element for modelling interfaces." European Journal of Computational Mechanics 18, no. 2 (January 2009): 155–75. http://dx.doi.org/10.3166/ejcm.18.155-175.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Tang, B., H. S. Mitri, and M. Bouteldja. "Finite-element modelling of rock anchors." Proceedings of the Institution of Civil Engineers - Ground Improvement 4, no. 2 (January 2000): 65–71. http://dx.doi.org/10.1680/grim.2000.4.2.65.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Kopysov, S. P., A. K. Novikov, V. N. Rychkov, Yu A. Sagdeeva, and L. E. Tonkov. "Virtual laboratory for finite element modelling." Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, no. 4 (December 2010): 131–45. http://dx.doi.org/10.20537/vm100415.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Sykulski, J. K., and R. L. Stoll. "FINITE ELEMENT MODELLING OF INDUCTIVE SENSORS." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 11, no. 1 (January 1992): 69–72. http://dx.doi.org/10.1108/eb051754.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Bougharriou, A., K. Saï, and W. Bouzid. "Finite element modelling of burnishing process." Materials Technology 25, no. 1 (March 2010): 56–62. http://dx.doi.org/10.1179/175355509x387110.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

AAMO, O. M., and T. I. FOSSEN. "Finite Element Modelling of Moored Vessels." Mathematical and Computer Modelling of Dynamical Systems 7, no. 1 (March 1, 2001): 47–75. http://dx.doi.org/10.1076/mcmd.7.1.47.3632.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Krichen, A., K. Sai, and W. Bouzid. "Finite element modelling of countersinking process." International Journal of Materials and Product Technology 33, no. 4 (2008): 376. http://dx.doi.org/10.1504/ijmpt.2008.022516.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Pecingina, O. M. "Modelling bucket excavation by finite element." IOP Conference Series: Materials Science and Engineering 95 (November 3, 2015): 012046. http://dx.doi.org/10.1088/1757-899x/95/1/012046.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Servranckx, D., and A. A. Mufti. "Data structures for finite element modelling." Engineering Computations 3, no. 1 (January 1986): 27–35. http://dx.doi.org/10.1108/eb023638.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Gay, Derek A. "Finite element modelling of steelpan acoustics." Journal of the Acoustical Society of America 123, no. 5 (May 2008): 3799. http://dx.doi.org/10.1121/1.2935485.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Röhrle, O., J. Davidson, and A. Pullan. "Finite element modelling of human mastication." Journal of Biomechanics 39 (January 2006): S55. http://dx.doi.org/10.1016/s0021-9290(06)83099-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Pavlović, M. N., S. Arnaout, and D. Hitchings. "Finite element modelling of sewer linings." Computers & Structures 63, no. 4 (May 1997): 837–48. http://dx.doi.org/10.1016/s0045-7949(96)00067-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Rucki, M. D., and G. R. Miller. "An adaptable finite element modelling kernel." Computers & Structures 69, no. 3 (November 1998): 399–409. http://dx.doi.org/10.1016/s0045-7949(98)00104-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Mohr, G. "Finite element modelling of distribution problems." Applied Mathematics and Computation 105, no. 1 (October 1999): 69–76. http://dx.doi.org/10.1016/s0096-3003(98)10097-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Marotti de Sciarra, Francesco. "Finite element modelling of nonlocal beams." Physica E: Low-dimensional Systems and Nanostructures 59 (May 2014): 144–49. http://dx.doi.org/10.1016/j.physe.2014.01.005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Aamo, O. M., and T. I. Fossen. "Finite element modelling of mooring lines." Mathematics and Computers in Simulation 53, no. 4-6 (October 2000): 415–22. http://dx.doi.org/10.1016/s0378-4754(00)00235-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Ramakrishnan, N., and V. S. Arunachalam. "Finite element methods for materials modelling." Progress in Materials Science 42, no. 1-4 (January 1997): 253–61. http://dx.doi.org/10.1016/s0079-6425(97)00031-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Holzinger, M. "Finite-element modelling of unbounded media." Simulation Practice and Theory 5, no. 6 (August 1997): p27—p28. http://dx.doi.org/10.1016/s0928-4869(97)84249-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Prendergast, Patrick J., Caitríona Lally, and Alexander B. Lennon. "Finite element modelling of medical devices." Medical Engineering & Physics 31, no. 4 (May 2009): 419. http://dx.doi.org/10.1016/j.medengphy.2009.03.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Petty, D. M. "Friction models for finite element modelling." Journal of Materials Processing Technology 45, no. 1-4 (September 1994): 7–12. http://dx.doi.org/10.1016/0924-0136(94)90310-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Mohammed, A. K., and S. T. Gomaa. "Finite element modelling of deep beams." Computers & Structures 48, no. 1 (July 1993): 63–71. http://dx.doi.org/10.1016/0045-7949(93)90458-p.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Henrotte, F., B. Meys, H. Hedia, P. Dular, and W. Legros. "Finite element modelling with transformation techniques." IEEE Transactions on Magnetics 35, no. 3 (May 1999): 1434–37. http://dx.doi.org/10.1109/20.767235.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Armstrong, Cecil G. "Modelling requirements for finite-element analysis." Computer-Aided Design 26, no. 7 (July 1994): 573–78. http://dx.doi.org/10.1016/0010-4485(94)90088-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Lin, Hua, Martin Sherburn, Jonathan Crookston, Andrew C. Long, Mike J. Clifford, and I. Arthur Jones. "Finite element modelling of fabric compression." Modelling and Simulation in Materials Science and Engineering 16, no. 3 (March 26, 2008): 035010. http://dx.doi.org/10.1088/0965-0393/16/3/035010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Lin, Hua, Mike J. Clifford, Andrew C. Long, and Martin Sherburn. "Finite element modelling of fabric shear." Modelling and Simulation in Materials Science and Engineering 17, no. 1 (December 16, 2008): 015008. http://dx.doi.org/10.1088/0965-0393/17/1/015008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Girdinio, P., M. Repetto, and J. Simkin. "Finite element modelling of charged beams." IEEE Transactions on Magnetics 30, no. 5 (September 1994): 2932–35. http://dx.doi.org/10.1109/20.312551.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Leonard, P. J., D. Rodger, T. Karagular, and P. C. Coles. "Finite element modelling of magnetic hysteresis." IEEE Transactions on Magnetics 31, no. 3 (May 1995): 1801–4. http://dx.doi.org/10.1109/20.376386.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Beynon, John H. "Finite–element modelling of thermomechanical processing." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, no. 1756 (June 15, 1999): 1573–87. http://dx.doi.org/10.1098/rsta.1999.0390.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Seetharamu, K. N., R. Paragasam, Ghulam A. Quadir, Z. A. Zainal, B. Sathya Prasad, and T. Sundararajan. "Finite element modelling of solidification phenomena." Sadhana 26, no. 1-2 (February 2001): 103–20. http://dx.doi.org/10.1007/bf02728481.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Papatriantafillou, Ioannis, Nikolaos Aravas, and Gregory N. Haidemenopoulos. "Finite Element Modelling of TRIP Steels." steel research international 75, no. 11 (November 2004): 730–36. http://dx.doi.org/10.1002/srin.200405835.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Sizova, Irina, Alexander Sviridov, Martin Günther, and Markus Bambach. "Finite Element Modelling of Titanium Aluminides." Computer Methods in Material Science 17, no. 1 (2017): 51–58. http://dx.doi.org/10.7494/cmms.2017.1.0575.

Testo completo
Abstract (sommario):
Hot forging is an important process for shaping and property control of lightweight titanium aluminide parts. Dynamic recrystallization and phase transformations play an essential role for the resulting grain size and accordingly the mechanical properties. Due to the fact that titanium aluminides require forging under isothermal conditions, reliable process modeling is needed to predict the microstructure evolution, to optimize the process time and to avoid excessive die loads. In the present study an isothermal forging process of a compressor blade made of TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B, at. %) is modeled using the Finite Element (FE) – Software Q-Form. A microstructure model describing the microstructure evolution during forging is presented. To calibrate the model, the high-temperature deformation behavior was investigated using isothermal compression tests. The tests were carried out at temperatures from 1150°C to 1300°C, applying strain rates ranging from 0.001s-1 to 0.5s-1, up to a true strain of 0.9. The experimentally determined flow stress data were described with model equations determined form the course of the strain hardening rate in Kocks-Mecking plots. An isothermal forging process of a compressor blade was carried out and used to validate the results from the FE simulations.
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Cheng, Xianchao, and Lin Zhang. "Finite-element modelling of multilayer X-ray optics." Journal of Synchrotron Radiation 24, no. 3 (April 11, 2017): 717–24. http://dx.doi.org/10.1107/s1600577517004738.

Testo completo
Abstract (sommario):
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (107) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 1016 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 106), which causes low solution accuracy; and the number of elements is still very large (106). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Yushchenko, K. A., E. A. Velikoivanenko, N. O. Chervyakov, G. F. Rozynka, and N. I. Pivtorak. "Finite-element modelling of stress-strain state in weldability tests (PVR-TEST)." Paton Welding Journal 2016, no. 12 (December 28, 2016): 9–12. http://dx.doi.org/10.15407/tpwj2016.12.02.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Kalanta, Stanislovas. "FINITE ELEMENTS FOR MODELLING BEAMS AFFECTED BY A DISTRIBUTED LOAD." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 5, no. 2 (April 30, 1999): 91–99. http://dx.doi.org/10.3846/13921525.1999.10531442.

Testo completo
Abstract (sommario):
Usually a finite element with cubic deflection approximation function is applied when evaluating the stress and strain field of bar structures. But such an element only approximately evaluates the actual strain field of the bar affected by a distributed load. The improved finite elements (Fig 1, 2) with fourth and fifth-order deflection approximation functions (1), (6) and (13) are presented in the actual manuscript. The fifth-order deflection approximation function is used for modelling the beams affected by a linearly distributed load (11). The plain bending of the finite element is modelled by 5 and 6 freedom degrees. The additional 5th and 6th freedom degrees are the deflection and deviation of the middle node of element (Fig 2). The element stiffness matrices (Table 1, 2) and node force vectors are presented. The created finite elements exactly modells the stress and strain field of bars, which are affected by distributed load, and also allow to compute directly the middle section displacements of bars. It creates conditions for diminishing the volume of problems and obtaining information, which is necessary to be analysed later. The reduced finite elements (Fig 4) are created by the elimination of the internal freedom degrees. Their number of freedom degrees is decreased up to the number of freedom degrees of a usually applied finite element. But the reduced finite elements have all afore-mentioned qualities. Formulas (20) and (21) are derived expressing the middle node displacements by the final node displacements. These formulas allow to compute the middle section displacements of the bar already after the solution of equation system. The proposed reduced elements can be introduced and applied in engineering practice very easily, because their stiffness matrix coincide with the stiffness matrix of a usual bar finite element. The created elements with internal freedom degrees are very important for the problems of structures optimization with displacement constraints, because the constraint of bar middle section displacement can form just in case, when this displacement is one of the problem's unknown. Also it is very important to decrease the number of unknowns of optimization problem.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Lengiewicz, Jakub, and Stanisław Stupkiewicz. "Continuum framework for finite element modelling of finite wear." Computer Methods in Applied Mechanics and Engineering 205-208 (January 2012): 178–88. http://dx.doi.org/10.1016/j.cma.2010.12.020.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Rezaeealam, Behrooz. "Finite-element/boundary-element transient modelling of hysteresis motors." Journal of Magnetism and Magnetic Materials 519 (February 2021): 167474. http://dx.doi.org/10.1016/j.jmmm.2020.167474.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Gabrielaitienė, Irena, Rimantas Kačianauskas, and Bengt Sunden. "THERMO-HYDRAULIC FINITE ELEMENT MODELLING OF DISTRICT HEATING NETWORK BY THE UNCOUPLED APPROACH." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 9, no. 3 (September 30, 2003): 153–62. http://dx.doi.org/10.3846/13923730.2003.10531321.

Testo completo
Abstract (sommario):
The modelling of uncoupled fluid flow and heat transfer problems of a district heating network using the finite element method (FEM) is presented. Since the standard thermo-hydraulic pipe elements cannot be directly used for modelling insulation, the main attention was paid to discretisation of multilayered structure of pipes and surrounding by one-dimensional thermal elements. In addition, validity of the finite element method was verified numerically by solving fluid flow and heat transfer problems in district heating pipelines. Verification analysis involves standard single pipe problems and simulation of fragment of district heating in Vilnius. Pressure and temperature results obtained by finite element method are compared with those by other approaches.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Das, S., Eric J. Palmiere, and I. C. Howard. "Modelling Recrystallisation during Thermomechanical Processing Using CAFE." Materials Science Forum 467-470 (October 2004): 623–28. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.623.

Testo completo
Abstract (sommario):
A common feature that stimulates modelling efforts across the various physical sciences is that complex microscopic behaviour underlies apparently simple macroscopic effects. Mathematical formulations attempt to capture the initial and evolving microstructural entities either implicitly or explicitly and link their effects to measurable macroscopic variables such as load or stress by averaging out any microscopic fluctuations. The implicit formulations that ignore the inherent spatial heterogeneity in the deforming domain form the basis of constitutive models for input to finite element (FE) systems. On the other hand, explicit formulations to capture and link microstructural entities rely on narrowing down the size of each finite element, thereby increasing the number of finite elements in the deforming domain, an effect accompanied by a rapid growth in computational time. The model described here, Cellular Automata based Finite Elements (CAFE), utilises the Cellular Automata technique to represent initial and evolving microstructural features (e.g., dislocation densities, grain sizes, etc.) in C-Mn steels at an appropriate length scale by linking the macro-scale process variables obtained using an overlying finite element mesh. Differences will be illustrated between single and two-pass hot rolling experiments.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia