Segui questo link per vedere altri tipi di pubblicazioni sul tema: Flow modeling.

Articoli di riviste sul tema "Flow modeling"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Flow modeling".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Sindeev, S. V., S. V. Frolov, D. Liepsch, and A. Balasso. "MODELING OF FLOW ALTERATIONS INDUCED BY FLOW-DIVERTER USING MULTISCALE MODEL OF HEMODYNAMICS." Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 23, no. 1 (2017): 025–32. http://dx.doi.org/10.17277/vestnik.2017.01.pp.025-032.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Elizabeth Philip, Babitha, and Jaseela K H. "Traffic Flow Modeling and Study of Traffic Congestion." International Journal of Scientific Engineering and Research 4, no. 1 (January 27, 2016): 67–68. https://doi.org/10.70729/ijser15667.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Giovangigli, Vincent. "Multicomponent flow modeling." Science China Mathematics 55, no. 2 (December 20, 2011): 285–308. http://dx.doi.org/10.1007/s11425-011-4346-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Carr, John, and Mark Howells. "Modeling pig flow." Livestock 21, no. 3 (May 2, 2016): 180–86. http://dx.doi.org/10.12968/live.2016.21.3.180.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Melikyan, V. Sh, V. D. Hovhannisyan, M. T. Grigoryan, A. A. Avetisyan, and H. T. Grigoryan. "Real Number Modeling Flow of Digital to Analog Converter." Proceedings of Universities. Electronics 26, no. 2 (April 2021): 144–53. http://dx.doi.org/10.24151/1561-5405-2021-26-2-144-153.

Testo completo
Abstract (sommario):
This work introduces a flow of digital to analog (DAC) implementation in digital environment of SystemVerilog. Unlike the classical Verilog models, this digital to analog converter behavioral model is analog. Such type of model creation in general is called real number modeling. The DAC model is verified by the HSPICE and SystemVerilog Co-simulations which show its applicability in different register transfer level verification environments. The digital environment with real number modeled DAC runs around 8 times faster than the same environment with SPICE model. At the same time, the output signal’s voltage difference between RNM and SPICE models is less than 2 mV.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Xiong, Jinbiao, Seiichi Koshizuka, and Mikio Sakai. "ICONE19-43282 TURBULENCE MODELING FOR MASS TRANSFER IN SEPARATED AND REATTACHING FLOWS FOR FLOW-ACCELERATED CORROSION." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_119.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Pohll, G. M., and J. C. Guitjens. "Modeling Regional Flow and Flow to Drains." Journal of Irrigation and Drainage Engineering 120, no. 5 (September 1994): 925–39. http://dx.doi.org/10.1061/(asce)0733-9437(1994)120:5(925).

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Khan, Sarosh I., and Pawan Maini. "Modeling Heterogeneous Traffic Flow." Transportation Research Record: Journal of the Transportation Research Board 1678, no. 1 (January 1999): 234–41. http://dx.doi.org/10.3141/1678-28.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Alley, R. B., and I. Joughin. "Modeling Ice-Sheet Flow." Science 336, no. 6081 (May 3, 2012): 551–52. http://dx.doi.org/10.1126/science.1220530.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ninković, Vladimir. "Dynamic migration flow modeling." Security Dialogues /Безбедносни дијалози 1-2 (2017): 149–67. http://dx.doi.org/10.47054/sd171-20149n.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Bollinger, L. Andrew, Chris Davis, Igor Nikolić, and Gerard P. J. Dijkema. "Modeling Metal Flow Systems." Journal of Industrial Ecology 16, no. 2 (December 13, 2011): 176–90. http://dx.doi.org/10.1111/j.1530-9290.2011.00413.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Balcerak, Ernie. "Modeling ice stream flow." Eos, Transactions American Geophysical Union 92, no. 49 (December 6, 2011): 464. http://dx.doi.org/10.1029/2011eo490018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

King, Richard B., Gary M. Raymond, and James B. Bassingthwaighte. "Modeling blood flow heterogeneity." Annals of Biomedical Engineering 24, no. 3 (May 1996): 352–72. http://dx.doi.org/10.1007/bf02660885.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Yule, A. J., M. Damou, and D. Kostopoulos. "Modeling confined jet flow." International Journal of Heat and Fluid Flow 14, no. 1 (March 1993): 10–17. http://dx.doi.org/10.1016/0142-727x(93)90035-l.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Slimani, Nadia, Ilham Slimani, Nawal Sbiti, and Mustapha Amghar. "Machine Learning and statistic predictive modeling for road traffic flow." International Journal of Traffic and Transportation Management 03, no. 01 (March 1, 2021): 17–24. http://dx.doi.org/10.5383/jttm.03.01.003.

Testo completo
Abstract (sommario):
Traffic forecasting is a research topic debated by several researchers affiliated to a range of disciplines. It is becoming increasingly important given the growth of motorized vehicles on the one hand, and the scarcity of lands for new transportation infrastructure on the other. Indeed, in the context of smart cities and with the uninterrupted increase of the number of vehicles, road congestion is taking up an important place in research. In this context, the ability to provide highly accurate traffic forecasts is of fundamental importance to manage traffic, especially in the context of smart cities. This work is in line with this perspective and aims to solve this problem. The proposed methodology plans to forecast day-by-day traffic stream using three different models: the Multilayer Perceptron of Artificial Neural Networks (ANN), the Seasonal Autoregressive Integrated Moving Average (SARIMA) and the Support Machine Regression (SMOreg). Using those three models, the forecast is realized based on a history of real traffic data recorded on a road section over 42 months. Besides, a recognized traffic manager in Morocco provides this dataset; the performance is then tested based on predefined criteria. From the experiment results, it is clear that the proposed ANN model achieves highest prediction accuracy with the lowest absolute relative error of 0.57%.
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Oussoren, Andrew, Jovica Riznic, and Shripad Revankar. "ICONE23-2115 MODELING CRITICAL FLOW IN CRACK GEOMETRIES USING TRACE." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–2—_ICONE23–2. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-2_44.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Supa-Amornkul, Savalaxs, Frank R. Steward, and Derek H. Lister. "Modeling Two-Phase Flow in Pipe Bends." Journal of Pressure Vessel Technology 127, no. 2 (December 8, 2004): 204–9. http://dx.doi.org/10.1115/1.1904063.

Testo completo
Abstract (sommario):
In order to have a better understanding of the interaction between the two-phase steam-water coolant in the outlet feeder pipes of the primary heat transport system of some CANDU reactors and the piping material, themalhydraulic modelling is being performed with a commercial computational fluid dynamics (CFD) code—FLUENT 6.1. The modeling has attempted to describe the results of flow visualization experiments performed in a transparent feeder pipe with air-water mixtures at temperatures below 55°C. The CFD code solves two sets of transport equations—one for each phase. Both phases are first treated separately as homogeneous. Coupling is achieved through pressure and interphase exchange coefficients. A symmetric drag model is employed to describe the interaction between the phases. The geometry and flow regime of interest are a 73 deg bend in a 5.9cm diameter pipe containing water with a Reynolds number of ∼1E5-1E6. The modeling predicted single-phase pressure drop and flow accurately. For two-phase flow with an air voidage of 5–50%, the pressure drop measurements were less well predicted. Furthermore, the observation that an air-water mixture tended to flow toward the outside of the bend while a single-phase liquid layer developed at the inside of the bend was not predicted. The CFD modeling requires further development for this type of geometry with two-phase flow of high voidage.
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Rad, Farhad, Midia Reashadi, and Ahmad Khademzadeh. "Flow Control Modeling in WiNoC." Journal of Iranian Association of Electrical and Electronics Engineers 19, no. 2 (April 1, 2022): 109–19. http://dx.doi.org/10.52547/jiaeee.19.2.109.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Khudjaev, M., and A. Rakhimov. "Gas flow modeling in wells." Journal of Physics: Conference Series 2131, no. 5 (December 1, 2021): 052075. http://dx.doi.org/10.1088/1742-6596/2131/5/052075.

Testo completo
Abstract (sommario):
Abstract The topic of research is gas flow modeling in wells. The subject of the study is to determine the dynamic parameters of gas in a gas well, taking into account changes in the ambient temperature and gravity. Mathematical and numerical modeling of gas flow in a gas well is performed; a numerical algorithm to determine gas pressure in a gas well is built. This algorithm allows studying the state of production and injection wells with varying conditions at the wellhead and at the lower end of the well. Research methods are based on the energy equations of the transported gas; the mass conservation equation, which are the basic equations of gas flow; the methods of numerical and mathematical modeling. In the article, numerical and mathematical models of gas flow in a gas well are obtained, taking into account changes in the ambient temperature and gravity. A numerical algorithm and a program were built to determine the gas-dynamic characteristics of wells. The computational process was based on the “cycle in cycle” principle. Provisions were made to study the state of production and injection wells with varying conditions at the wellhead and at the bottom end of the well.
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Brill, James P. "Modeling Multiphase Flow in Pipes." Way Ahead 06, no. 02 (June 1, 2010): 16–17. http://dx.doi.org/10.2118/0210-016-twa.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Wang, Xiaoming, Xiaoyong Li, and Dmitri Loguinov. "Modeling Residual-Geometric Flow Sampling." IEEE/ACM Transactions on Networking 21, no. 4 (August 2013): 1090–103. http://dx.doi.org/10.1109/tnet.2012.2231435.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Wei, X., Y. Zhao, Z. Fan, W. Li, F. Qiu, S. Yoakum-Stover, and A. E. Kaufman. "Lattice-based flow field modeling." IEEE Transactions on Visualization and Computer Graphics 10, no. 6 (November 2004): 719–29. http://dx.doi.org/10.1109/tvcg.2004.48.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Langevin, Christian D. "Modeling Axisymmetric Flow and Transport." Ground Water 46, no. 4 (July 2008): 579–90. http://dx.doi.org/10.1111/j.1745-6584.2008.00445.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Bredehoeft, John. "Modeling Groundwater Flow-The Beginnings." Ground Water 50, no. 3 (April 27, 2012): 325–29. http://dx.doi.org/10.1111/j.1745-6584.2012.00940.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Caputo, Antonio C., and Pacifico M. Pelagagge. "Flow Modeling in Fabric Filters." Journal of Porous Media 2, no. 2 (1999): 191–204. http://dx.doi.org/10.1615/jpormedia.v2.i2.70.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Freeze, Allan. "Modeling groundwater flow and pollution." Canadian Geotechnical Journal 25, no. 4 (November 1, 1988): 851–52. http://dx.doi.org/10.1139/t88-098.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Villaret, C., and A. G. Davies. "Modeling Sediment-Turbulent Flow Interactions." Applied Mechanics Reviews 48, no. 9 (September 1, 1995): 601–9. http://dx.doi.org/10.1115/1.3023148.

Testo completo
Abstract (sommario):
Models of widely differing complexity have been used in recent years to quantify sediment transport processes for engineering applications. This paper presents a review of these model types, from simple eddy viscosity models involving the “passive scalar hypothesis” for sediment predication, to complex two-phase flow models. The specific points addressed in this review include, for the suspension layer, the bottom boundary conditions, the relationship between the turbulent eddy viscosity and particle diffusivity, the damping of turbulence by vertical gradients in suspended sediment concentration, and hindered settling. For the high-concentration near-bed layer, the modeling of particle interactions is discussed mainly with reference to two-phase flow models. The paper concludes with a comparison between the predictions of both a classical, one-equation, turbulence k-model and a two-phase flow model, with “starved bed” experimental data sets obtained in steady, open-channel flow.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Lagha, M., and P. Manneville. "Modeling transitional plane Couette flow." European Physical Journal B 58, no. 4 (August 2007): 433–47. http://dx.doi.org/10.1140/epjb/e2007-00243-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Abdullah, Makola M., Kenneth K. Walsh, Shannon Grady, and G. Dale Wesson. "Modeling Flow around Bluff Bodies." Journal of Computing in Civil Engineering 19, no. 1 (January 2005): 104–7. http://dx.doi.org/10.1061/(asce)0887-3801(2005)19:1(104).

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Long, J., and P. Chen. "MODELING OF CONCENTRATED SUSPENSION FLOW." Transactions of the Canadian Society for Mechanical Engineering 24, no. 1B (May 2000): 151–67. http://dx.doi.org/10.1139/tcsme-2000-0011.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Abbott, M. B. "Range of Tidal Flow Modeling." Journal of Hydraulic Engineering 123, no. 4 (April 1997): 257–77. http://dx.doi.org/10.1061/(asce)0733-9429(1997)123:4(257).

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Molenaar, J., and R. J. Koopmans. "Modeling polymer melt‐flow instabilities." Journal of Rheology 38, no. 1 (January 1994): 99–109. http://dx.doi.org/10.1122/1.550603.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Combinido, Jay Samuel L., and May T. Lim. "Modeling U-turn traffic flow." Physica A: Statistical Mechanics and its Applications 389, no. 17 (September 2010): 3640–47. http://dx.doi.org/10.1016/j.physa.2010.04.009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Verdier, Claude, Cécile Couzon, Alain Duperray, and Pushpendra Singh. "Modeling cell interactions under flow." Journal of Mathematical Biology 58, no. 1-2 (February 22, 2008): 235–59. http://dx.doi.org/10.1007/s00285-008-0164-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Greenspan, D. "Quasimolecular modeling of cavity flow." Computers & Mathematics with Applications 14, no. 4 (1987): 239–48. http://dx.doi.org/10.1016/0898-1221(87)90131-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Sopasakis, A. "Unstable flow theory and modeling,." Mathematical and Computer Modelling 35, no. 5-6 (March 2002): 623–41. http://dx.doi.org/10.1016/s0895-7177(01)00186-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Sopasakis, A. "Unstable flow theory and modeling." Mathematical and Computer Modelling 35, no. 5-6 (March 2002): 623–41. http://dx.doi.org/10.1016/s0895-7177(02)80025-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Hutter, K., B. Svendsen, and D. Rickenmann. "Debris flow modeling: A review." Continuum Mechanics and Thermodynamics 8, no. 1 (February 1994): 1–35. http://dx.doi.org/10.1007/bf01175749.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Konikow, Leonard F., and James W. Mercer. "Groundwater flow and transport modeling." Journal of Hydrology 100, no. 1-3 (July 1988): 379–409. http://dx.doi.org/10.1016/0022-1694(88)90193-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Pandit, Ashok, and Jean M. Abi Aoun. "Numerical Modeling of Axisymmetric Flow." Ground Water 32, no. 3 (May 1994): 458–64. http://dx.doi.org/10.1111/j.1745-6584.1994.tb00663.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Konikow, Leonard F. "Modeling Groundwater Flow and Pollution." Eos, Transactions American Geophysical Union 69, no. 45 (1988): 1557. http://dx.doi.org/10.1029/88eo01182.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Patzák, B., and Z. Bittnar. "Modeling of fresh concrete flow." Computers & Structures 87, no. 15-16 (August 2009): 962–69. http://dx.doi.org/10.1016/j.compstruc.2008.04.015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Park, Chul Woong, Jaeman Park, Naree Kim, and Youngchul Kim. "Modeling water flow on Façade." Automation in Construction 93 (September 2018): 265–79. http://dx.doi.org/10.1016/j.autcon.2018.05.021.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Kemper, Benjamin, Jeroen de Mast, and Michel Mandjes. "Modeling process flow using diagrams." Quality and Reliability Engineering International 26, no. 4 (August 10, 2009): 341–49. http://dx.doi.org/10.1002/qre.1061.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Miller, Andrzej, Krzysztof Badyda, Jaroslaw Dyjas, and Karol Miller. "Modeling of flow system dynamics." Journal of Thermal Science 13, no. 1 (February 2004): 56–61. http://dx.doi.org/10.1007/s11630-004-0009-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Gibson, M. M. "Turbulence measurements and flow modeling." International Journal of Heat and Fluid Flow 8, no. 4 (December 1987): 339. http://dx.doi.org/10.1016/0142-727x(87)90078-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Andersson, H. I., and B. A. Pettersson. "Modeling plane turbulent Couette flow." International Journal of Heat and Fluid Flow 15, no. 6 (December 1994): 447–55. http://dx.doi.org/10.1016/0142-727x(94)90003-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Wang, Yanlin, Bingde Chen, Yanping Huang, and Junfeng Wang. "ICONE19-43704 Modeling on Bubbly to Churn Flow Pattern Transition for Vertical Upward Flows in Narrow Rectangular Channel." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_273.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Kumar Upadhyay, Ashutosh. "Dynamic Modeling of Blood Flow and Pressure in the Cardiovascular System." International Journal of Science and Research (IJSR) 13, no. 5 (May 5, 2024): 1192–99. http://dx.doi.org/10.21275/sr24518032944.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

V R Nandigana, Vishal. "Analytical Modeling of Electroosmotic and Ion Transport Flow in Nanofluidic Channels." International Journal of Science and Research (IJSR) 10, no. 5 (May 27, 2021): 1194–98. https://doi.org/10.21275/sr21526190405.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia