Segui questo link per vedere altri tipi di pubblicazioni sul tema: Fluid-structure interaction.

Articoli di riviste sul tema "Fluid-structure interaction"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Fluid-structure interaction".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Xing, Jing Tang. "Fluid-Structure Interaction." Strain 39, no. 4 (2003): 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bazilevs, Yuri, Kenji Takizawa, and Tayfun E. Tezduyar. "Fluid–structure interaction." Computational Mechanics 55, no. 6 (2015): 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati, and Sang-Eul Han. "The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method." Journal of Clean Energy Technologies 3, no. 4 (2015): 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Ortiz, Jose L., and Alan A. Barhorst. "Modeling Fluid-Structure Interaction." Journal of Guidance, Control, and Dynamics 20, no. 6 (1997): 1221–28. http://dx.doi.org/10.2514/2.4180.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ko, Sung H. "Structure–fluid interaction problems." Journal of the Acoustical Society of America 88, no. 1 (1990): 367. http://dx.doi.org/10.1121/1.399912.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Semenov, Yuriy A. "Fluid/Structure Interactions." Journal of Marine Science and Engineering 10, no. 2 (2022): 159. http://dx.doi.org/10.3390/jmse10020159.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Takizawa, Kenji, Yuri Bazilevs, and Tayfun E. Tezduyar. "Computational fluid mechanics and fluid–structure interaction." Computational Mechanics 50, no. 6 (2012): 665. http://dx.doi.org/10.1007/s00466-012-0793-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Bazilevs, Yuri, Kenji Takizawa, and Tayfun E. Tezduyar. "Biomedical fluid mechanics and fluid–structure interaction." Computational Mechanics 54, no. 4 (2014): 893. http://dx.doi.org/10.1007/s00466-014-1056-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Souli, M., K. Mahmadi, and N. Aquelet. "ALE and Fluid Structure Interaction." Materials Science Forum 465-466 (September 2004): 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Chung, H., and M. D. Bernstein. "Topics in Fluid Structure Interaction." Journal of Pressure Vessel Technology 107, no. 1 (1985): 99. http://dx.doi.org/10.1115/1.3264418.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

van Rij, J., T. Harman, and T. Ameel. "Slip flow fluid-structure-interaction." International Journal of Thermal Sciences 58 (August 2012): 9–19. http://dx.doi.org/10.1016/j.ijthermalsci.2012.03.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Izadpanah, Kamran, Robert L. Harder, Raj Kansakar, and Mike Reymond. "Coupled fluid-structure interaction analysis." Finite Elements in Analysis and Design 7, no. 4 (1991): 331–42. http://dx.doi.org/10.1016/0168-874x(91)90049-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Hsiao, George C., Francisco-Javier Sayas, and Richard J. Weinacht. "Time-dependent fluid-structure interaction." Mathematical Methods in the Applied Sciences 40, no. 2 (2015): 486–500. http://dx.doi.org/10.1002/mma.3427.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Tijsseling, A. S., and C. S. W. Lavooij. "Waterhammer with fluid-structure interaction." Applied Scientific Research 47, no. 3 (1990): 273–85. http://dx.doi.org/10.1007/bf00418055.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Bathe, Klaus-Ju¨rgen. "Fluid-structure Interactions." Mechanical Engineering 120, no. 04 (1998): 66–68. http://dx.doi.org/10.1115/1.1998-apr-4.

Testo completo
Abstract (sommario):
This article reviews finite element methods that are widely used in the analysis of solids and structures, and they provide great benefits in product design. In fact, with today’s highly competitive design and manufacturing markets, it is nearly impossible to ignore the advances that have been made in the computer analysis of structures without losing an edge in innovation and productivity. Various commercial finite-element programs are widely used and have proven to be indispensable in designing safer, more economical products. Applications of acoustic-fluid/structure interactions are found w
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Jensen, J. S. "FLUID TRANSPORT DUE TO NONLINEAR FLUID–STRUCTURE INTERACTION." Journal of Fluids and Structures 11, no. 3 (1997): 327–44. http://dx.doi.org/10.1006/jfls.1996.0080.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Toma, Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky, and Wenbin Mao. "Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics." Biology 10, no. 3 (2021): 185. http://dx.doi.org/10.3390/biology10030185.

Testo completo
Abstract (sommario):
Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid–structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid–structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop c
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Rafatpanah, Ramin M., and Jianfeng Yang. "ICONE23-1732 SIMULATING FLUID-STRUCTURE INTERACTION UTILIZING THREE-DIMENSIONAL ACOUSTIC FLUID ELEMENTS FOR REACTOR EQUIPMENT SYSTEM MODEL." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_362.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Lefrançois, Emmanuel. "Fluid-structure interaction in rocket engines." European Journal of Computational Mechanics 19, no. 5-7 (2010): 637–52. http://dx.doi.org/10.3166/ejcm.19.637-652.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Chen, Wenli, Zifeng Yang, Gang Hu, Haiquan Jing, and Junlei Wang. "New Advances in Fluid–Structure Interaction." Applied Sciences 12, no. 11 (2022): 5366. http://dx.doi.org/10.3390/app12115366.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Meywerk, M., F. Decker, and J. Cordes. "Fluid-structure interaction in crash simulation." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 214, no. 7 (2000): 669–73. http://dx.doi.org/10.1243/0954407001527547.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Lohner, R., J. Cebral, Chi Yang, et al. "Large-scale fluid-structure interaction simulations." Computing in Science & Engineering 6, no. 3 (2004): 27–37. http://dx.doi.org/10.1109/mcise.2004.1289306.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Oden, J. T., L. Demkowicz, and J. Bennighof. "Fluid-Structure Interaction in Underwater Acoustics." Applied Mechanics Reviews 43, no. 5S (1990): S374—S380. http://dx.doi.org/10.1115/1.3120843.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Benaroya, Haym, and Rene D. Gabbai. "Modelling vortex-induced fluid–structure interaction." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1868 (2007): 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.

Testo completo
Abstract (sommario):
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid–structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid–structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-orde
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Musharaf, Hafiz Muhammad, Uditha Roshan, Amith Mudugamuwa, Quang Thang Trinh, Jun Zhang, and Nam-Trung Nguyen. "Computational Fluid–Structure Interaction in Microfluidics." Micromachines 15, no. 7 (2024): 897. http://dx.doi.org/10.3390/mi15070897.

Testo completo
Abstract (sommario):
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid–structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and stru
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Souli, Mhamed, and Nicolas Aquelet. "Fluid Structure Interaction for Hydraulic Problems." La Houille Blanche, no. 6 (December 2011): 5–10. http://dx.doi.org/10.1051/lhb/2011054.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Benyahia, Nabil, and Ferhat Souidi. "Fluid-structure interaction in pipe flow." Progress in Computational Fluid Dynamics, An International Journal 7, no. 6 (2007): 354. http://dx.doi.org/10.1504/pcfd.2007.014685.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Chakraborty, Debadi, J. Ravi Prakash, James Friend, and Leslie Yeo. "Fluid-structure interaction in deformable microchannels." Physics of Fluids 24, no. 10 (2012): 102002. http://dx.doi.org/10.1063/1.4759493.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

TAKIZAWA, KENJI, and TAYFUN E. TEZDUYAR. "SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS." Mathematical Models and Methods in Applied Sciences 22, supp02 (2012): 1230001. http://dx.doi.org/10.1142/s0218202512300013.

Testo completo
Abstract (sommario):
Since its introduction in 1991 for computation of flow problems with moving boundaries and interfaces, the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation has been applied to a diverse set of challenging problems. The classes of problems computed include free-surface and two-fluid flows, fluid–object, fluid–particle and fluid–structure interaction (FSI), and flows with mechanical components in fast, linear or rotational relative motion. The DSD/SST formulation, as a core technology, is being used for some of the most challenging FSI problems, including parachute modeling a
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Gorla, Rama Subba Reddy, Shantaram S. Pai, and Jeffrey J. Rusick. "Probabilistic study of fluid structure interaction." International Journal of Engineering Science 41, no. 3-5 (2003): 271–82. http://dx.doi.org/10.1016/s0020-7225(02)00205-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Haase, Werner. "Unsteady aerodynamics including fluid/structure interaction." Air & Space Europe 3, no. 3-4 (2001): 83–86. http://dx.doi.org/10.1016/s1290-0958(01)90063-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Casoni, Eva, Guillaume Houzeaux, and Mariano Vázquez. "Parallel Aspects of Fluid-structure Interaction." Procedia Engineering 61 (2013): 117–21. http://dx.doi.org/10.1016/j.proeng.2013.07.103.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Degroote, Joris. "Partitioned Simulation of Fluid-Structure Interaction." Archives of Computational Methods in Engineering 20, no. 3 (2013): 185–238. http://dx.doi.org/10.1007/s11831-013-9085-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Griffith, Boyce E., and Neelesh A. Patankar. "Immersed Methods for Fluid–Structure Interaction." Annual Review of Fluid Mechanics 52, no. 1 (2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.

Testo completo
Abstract (sommario):
Fluid–structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed methods provide mathematical and computational frameworks for modeling fluid–structure systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian description of the structure, can treat thin immersed boundaries and volumetric bodies, and they can model structures that are flexible or rigid or that move with prescribed deformational kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid the frequent grid regeneration tha
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Kamakoti, Ramji, and Wei Shyy. "Fluid–structure interaction for aeroelastic applications." Progress in Aerospace Sciences 40, no. 8 (2004): 535–58. http://dx.doi.org/10.1016/j.paerosci.2005.01.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Han, Luhui, and Xiangyu Hu. "SPH modeling of fluid-structure interaction." Journal of Hydrodynamics 30, no. 1 (2018): 62–69. http://dx.doi.org/10.1007/s42241-018-0006-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Dumitrache, C. L., and D. Deleanu. "Sloshing effect, Fluid Structure Interaction analysis." IOP Conference Series: Materials Science and Engineering 916 (September 11, 2020): 012030. http://dx.doi.org/10.1088/1757-899x/916/1/012030.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Samuelides, E., and P. A. Frieze. "Fluid-structure interaction in ship collisions." Marine Structures 2, no. 1 (1989): 65–88. http://dx.doi.org/10.1016/0951-8339(89)90024-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Jung, Sunghwan, and Ramiro Godoy-Diana. "Special issue: bioinspired fluid-structure interaction." Bioinspiration & Biomimetics 18, no. 3 (2023): 030401. http://dx.doi.org/10.1088/1748-3190/acc778.

Testo completo
Abstract (sommario):
Abstract Fluid-structure interaction (FSI) studies the interaction between fluid and solid objects. It helps understand how fluid motion affects solid objects and vice versa. FSI research is important in engineering applications such as aerodynamics, hydrodynamics, and structural analysis. It has been used to design efficient systems such as ships, aircraft, and buildings. FSI in biological systems has gained interest in recent years for understanding how organisms interact with their fluidic environment. Our special issue features papers on various biological and bio-inspired FSI problems. Pa
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Hou, Gene, Jin Wang, and Anita Layton. "Numerical Methods for Fluid-Structure Interaction — A Review." Communications in Computational Physics 12, no. 2 (2012): 337–77. http://dx.doi.org/10.4208/cicp.291210.290411s.

Testo completo
Abstract (sommario):
AbstractThe interactions between incompressible fluid flows and immersed structures are nonlinear multi-physics phenomena that have applications to a wide range of scientific and engineering disciplines. In this article, we review representative numerical methods based on conforming and non-conforming meshes that are currently available for computing fluid-structure interaction problems, with an emphasis on some of the recent developments in the field. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Wang, Xiaolin, Ken Kamrin, and Chris H. Rycroft. "An incompressible Eulerian method for fluid–structure interaction with mixed soft and rigid solids." Physics of Fluids 34, no. 3 (2022): 033604. http://dx.doi.org/10.1063/5.0082233.

Testo completo
Abstract (sommario):
We present a general simulation approach for incompressible fluid–structure interactions in a fully Eulerian framework using the reference map technique. The approach is suitable for modeling one or more rigid or finitely deformable objects or soft objects with rigid components interacting with the fluid and with each other. It is also extended to control the kinematics of structures in fluids. The model is based on our previous Eulerian fluid–soft solver [Rycroft et al., “Reference map technique for incompressible fluid–structure interaction,” J. Fluid Mech. 898, A9 (2020)] and generalized to
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Huerta, A., and W. K. Liu. "Viscous Flow Structure Interaction." Journal of Pressure Vessel Technology 110, no. 1 (1988): 15–21. http://dx.doi.org/10.1115/1.3265561.

Testo completo
Abstract (sommario):
Considerable research activities in vibration and seismic analysis for various fluid-structure systems have been carried out in the past two decades. Most of the approaches are formulated within the framework of finite elements, and the majority of work deals with inviscid fluids. However, there has been little work done in the area of fluid-structure interaction problems accounting for flow separation and nonlinear phenomenon of steady streaming. In this paper, the Arbitrary Lagrangian Eulerian (ALE) finite element method is extended to address the flow separation and nonlinear phenomenon of
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Nho, In-Sik, and Sang-Mook Shin. "Fluid-Structure Interaction Analysis for Structure in Viscous Flow." Journal of the Society of Naval Architects of Korea 45, no. 2 (2008): 168–74. http://dx.doi.org/10.3744/snak.2008.45.2.168.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Liu, Tiegang, A. W. Chowdhury, and Boo Cheong Khoo. "The Modified Ghost Fluid Method Applied to Fluid-Elastic Structure Interaction." Advances in Applied Mathematics and Mechanics 3, no. 5 (2011): 611–32. http://dx.doi.org/10.4208/aamm.10-m1054.

Testo completo
Abstract (sommario):
AbstractIn this work, the modified ghost fluid method is developed to deal with 2D compressible fluid interacting with elastic solid in an Euler-Lagrange coupled system. In applying the modified Ghost Fluid Method to treat the fluid-elastic solid coupling, the Navier equations for elastic solid are cast into a system similar to the Euler equations but in Lagrangian coordinates. Furthermore, to take into account the influence of material deformation and nonlinear wave interaction at the interface, an Euler-Lagrange Riemann problem is constructed and solved approximately along the normal directi
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Gu, Hua, and Gen Hua Yan. "Research on the Effect of Fluid-Structure Interaction on Dynamic Response of Gate Structure." Advanced Materials Research 199-200 (February 2011): 811–18. http://dx.doi.org/10.4028/www.scientific.net/amr.199-200.811.

Testo completo
Abstract (sommario):
This essay reveals that on the basis of fluid-structure interaction having appreciable impact on auto-vibration of gate structure, analysis and calculation on dynamic response characteristics of gate structural fluid-structure interaction have been conducted. The results indicate that under the same dynamic load the structural dynamic response value with fluid-structure interaction effect considered is remarkably larger than vibration response with fluid-structure interaction effect considering. The calculating results indicate that the largest response increase of typical parts of gate struct
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Zhang, Guanyu, Xiang Chen, and Decheng Wan. "MPS-FEM Coupled Method for Study of Wave-Structure Interaction." Journal of Marine Science and Application 18, no. 4 (2019): 387–99. http://dx.doi.org/10.1007/s11804-019-00105-6.

Testo completo
Abstract (sommario):
Abstract Nowadays, an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea. As a result, some phenomena related to the violent fluid-elastic structure interactions (e.g., hydrodynamic slamming on marine vessels, tsunami impact on onshore structures, and sloshing in liquid containers) have aroused huge challenges to ocean engineering fields. In this paper, the moving particle semi-implicit (MPS) method and finite element method (FEM) coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a ho
Gli stili APA, Harvard, Vancouver, ISO e altri
47

TAN, V. B. C., and T. BELYTSCHKO. "BLENDED MESH METHODS FOR FLUID-STRUCTURE INTERACTION." International Journal of Computational Methods 01, no. 02 (2004): 387–406. http://dx.doi.org/10.1142/s0219876204000186.

Testo completo
Abstract (sommario):
In many cases, it is advantageous to discretize a domain using several finite element meshes instead of a single mesh. For example, in fluid-structure interaction problems, an Eulerian mesh is advantageous for the fluid domain while a Lagrangian mesh is most suited for the structure. However, the interface conditions between different types of meshes often lead to significant errors. A method of treating different meshes by smoothly varying the description from Lagrangian to Eulerian in an interface or blending domain is presented. A Lagrangian mesh is used for the structure while two differen
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Tchieu, A. A., D. Crowdy, and A. Leonard. "Fluid-structure interaction of two bodies in an inviscid fluid." Physics of Fluids 22, no. 10 (2010): 107101. http://dx.doi.org/10.1063/1.3485063.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Hamdan, F. H. "Near-field fluid–structure interaction using Lagrangian fluid finite elements." Computers & Structures 71, no. 2 (1999): 123–41. http://dx.doi.org/10.1016/s0045-7949(98)00298-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Yang, Liang. "One-fluid formulation for fluid–structure interaction with free surface." Computer Methods in Applied Mechanics and Engineering 332 (April 2018): 102–35. http://dx.doi.org/10.1016/j.cma.2017.12.016.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!