Letteratura scientifica selezionata sul tema "Frequency shifted feedback"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Frequency shifted feedback".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Frequency shifted feedback"
Yoshida, Masato, Koichiro NAKAMURA e Hiromasa ITO. "Frequency-Shifted Feedback Fiber Laser." Review of Laser Engineering 27, n. 7 (1999): 490–94. http://dx.doi.org/10.2184/lsj.27.490.
Testo completoBalle, Stefan. "Lasers with internal frequency-shifted feedback". Optical Engineering 33, n. 4 (1 aprile 1994): 1146. http://dx.doi.org/10.1117/12.163197.
Testo completoBalle, Stefan, Ian C. M. Littler, Klaas Bergmann e Frank V. Kowalski. "Frequency shifted feedback dye laser operating at a small shift frequency". Optics Communications 102, n. 1-2 (settembre 1993): 166–74. http://dx.doi.org/10.1016/0030-4018(93)90487-p.
Testo completoPaul, J., P. S. Spencer, K. A. Shore, I. Pierce e Y. Hong. "Optical frequency-domain ranging using a frequency-shifted feedback distributed-feedback laser". IET Optoelectronics 1, n. 6 (1 dicembre 2007): 277–79. http://dx.doi.org/10.1049/iet-opt:20070034.
Testo completoSaarinen, Esa J., Jari Nikkinen e Oleg G. Okhotnikov. "Semiconductor Disk Laser With Frequency-Shifted Feedback". IEEE Photonics Technology Letters 23, n. 9 (maggio 2011): 567–69. http://dx.doi.org/10.1109/lpt.2011.2116779.
Testo completoGuillet de Chatellus, H., e J. P. Pique. "Statistical properties of frequency shifted feedback lasers". Optics Communications 283, n. 1 (gennaio 2010): 71–77. http://dx.doi.org/10.1016/j.optcom.2009.09.027.
Testo completoYatsenko, L. P., B. W. Shore e K. Bergmann. "Theory of a frequency-shifted feedback laser". Optics Communications 236, n. 1-3 (giugno 2004): 183–202. http://dx.doi.org/10.1016/j.optcom.2004.03.049.
Testo completode Chatellus, Hugues Guillet, Eric Lacot, Olivier Jacquin, Wilfried Glastre e Olivier Hugon. "Heterodyne beatings between frequency-shifted feedback lasers". Optics Letters 37, n. 5 (21 febbraio 2012): 791. http://dx.doi.org/10.1364/ol.37.000791.
Testo completoNatke, Ulrich, e Karl Theodor Kalveram. "Effects of Frequency-Shifted Auditory Feedback on Fundamental Frequency of Long Stressed and Unstressed Syllables". Journal of Speech, Language, and Hearing Research 44, n. 3 (giugno 2001): 577–84. http://dx.doi.org/10.1044/1092-4388(2001/045).
Testo completoNakamura, K., T. Hara, M. Yoshida, T. Miyahara e H. Ito. "Optical frequency domain ranging by a frequency-shifted feedback laser". IEEE Journal of Quantum Electronics 36, n. 3 (marzo 2000): 305–16. http://dx.doi.org/10.1109/3.825877.
Testo completoTesi sul tema "Frequency shifted feedback"
Thorette, Aurélien. "Synchronization dynamics of dual-mode solid-state and semiconductor DFB lasers under frequency-shifted feedback : applications to microwave photonics". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S059/document.
Testo completoThe control of the frequency difference between two lasers is a cross-cutting challenge in many fields of photonics, either for the generation of high-purity heterodyne microwave beatnotes, or in metrology and telecommunication experiments. The advances of the comprehension of laser dynamics under various couplings has allowed to develop stabilization methods based on optical injection. We study here theoretically and experimentally a mechanism called frequency-shifted feedback (FSF), which allows to precisely control the frequency difference between two lasers in several situations.First, the FSF method is applied to a dual-frequency dual-polarization solid-state Nd:YAG laser, in order to lock the phases of its two orthogonal polarization modes. A model of rate equations is used to precisely describe the experiment, and allows to highlight partial "bounded phase" synchronization regimes. Furthermore, we show that in some cases this synchronization can subsist even with chaotic oscillations of the intensity and phase. The behavior of the laser under FSF is studied for varying values of the frequency detuning, injection rate, possible injection delay, and mode coupling in the active medium. Finally, we find that the inclusion of a phase-amplitude coupling (non-zero linewidth enhancement factor) is needed in the model to account for experimental observation. This leads to the development of an ad-hoc technique to measure the low value of this usually neglected factor in solid-laser lasers.The FSF stabilization mechanism is then applied to a custom semiconductor component embedding two DFB lasers overs InP. In spite of a more complex coupling scheme and the large effective delays into play, phase locking of the two lasers is possible. Due to the delay, locking bands appear when the detuning changes, and this behavior can be replicated using a numerical model. This model also permit to determine working conditions minimizing the influence of uncontrolled experimental optical feedback phases. Finally, as this system allows to control a microwave phase over an optical carrier, it can be integrated in a resonant loop not unlike an opto-electronic oscillator (OEO). We realized an oscillator generating a self-referenced, single sideband microwave signal over an optical carrier, with encouraging phase noise performances. In this case, it seems that most of the techniques that exist for standard OEO can be reused
Klubus, Jan. "Elektronické filtrační obvody s obecnými kmitočtovými charakteristikami". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413252.
Testo completoWu, Yu-Chen, e 吳育政. "The study of 1.5 μm frequency-shifted-feedback fiber laser". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/37649544225143715335.
Testo completo逢甲大學
光電研究所
99
In this paper, a frequency shifter was used inside a fiber laser to build up a 1.5-μm frequency-shifted feedback (FSF) fiber laser. The frequency shifter used in this experiment was an acousto-optic modulator (AOM) driven at 110 MHz. Since the AOM was used in a double-pass configuration, our FSF fiber laser can generate frequency comb with an equi-frequency interval of 220 MHz. We observed that when the Second harmonic of the AOM driven frequency was resonant with laser cavity, we can inhibit the relaxation oscillation of our fiber laser. Center frequency of the frequency comb from our FSF laser could be controlled by seeding an external cavity tunable diode laser (ECDL) into the cavity of the FSF laser. This frequency comb was center at 1.53- μm with an optical bandwidth about 5 nm, and total output power is 2 mW.
Bawden, Nathaniel. "Pulsed Fibre Lasers Beyond 3 Micron". Thesis, 2021. https://hdl.handle.net/2440/134209.
Testo completoThesis (Ph.D.) -- University of Adelaide, School of Physical Sciences, 2021
Capitoli di libri sul tema "Frequency shifted feedback"
Kim, J. I., V. V. Ogurtsov, G. Bonnet, L. P. Yatsenko e K. Bergmann. "Ranging with Frequency-Shifted Feedback Lasers: From μm-Range Accuracy to MHz-Range Measurement Rate". In Exploring the World with the Laser, 701–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64346-5_38.
Testo completoWang, Meng, Mengda Li e Xinghao Wang. "Simulation Study of the Improved Positive Feedback Active Frequency Shift Island Detection Method". In Advances in Intelligent Systems and Computing, 596–603. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34387-3_73.
Testo completoUmemoto, S., M. Fujii, N. Miyamoto, T. Okamoto, T. Hara, H. Ito e Y. Fujino. "Deflection measurement for bridges with frequency-shifted feedback laser". In Bridge Maintenance, Safety, Management and Life-Cycle Optimization, 502. CRC Press, 2010. http://dx.doi.org/10.1201/b10430-389.
Testo completoKubota, K., Y. Fujino, N. Miyamoto, T. Hara, H. Ito, S. Umemoto e T. Okamoto. "The application of the frequency-shifted feedback laser optical coordinates measurement system for field measurement of bridges in service". In Bridge Maintenance, Safety Management, Health Monitoring and Informatics - IABMAS '08. Taylor & Francis, 2008. http://dx.doi.org/10.1201/9781439828434.ch187.
Testo completoMurphy, Kevin R. "The Past, Present, and Future of Performance Management". In Performance Management Transformation, 318–42. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190942878.003.0016.
Testo completoWilkens, Christian P. "Remote University Supervision of Student Teachers". In Preparing Faculty for Technology Dependency in the Post-COVID-19 Era, 16–37. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9235-9.ch002.
Testo completoZhikhareva-Tolstik, Hanna, e Victoria Datsenko. "EXPERIENCE OF FUNCTIONAL RECONSTRUCTION OF SHOPPING CENTERS OF FRANCE, JAPAN, USA, CHINA, GERMANY AND UKRAINE IN THE ERA OF DIGITAL TECHNOLOGIES". In Integration of traditional and innovation processes of development of modern science. Publishing House “Baltija Publishing”, 2020. http://dx.doi.org/10.30525/978-9934-26-021-6-17.
Testo completoAtti di convegni sul tema "Frequency shifted feedback"
Kowalski, Frank V., Stefan Balle, Ian C. M. Littler e Klaas Bergmann. "Lasers with internal frequency-shifted feedback". In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, a cura di Roger L. Facklam, Karl H. Guenther e Stephan P. Velsko. SPIE, 1993. http://dx.doi.org/10.1117/12.148375.
Testo completoPhillips, M. W., G. Y. Liang e J. R. M. Barr. "Nd:YLF Laser with Frequency-Shifted Feedback". In Advanced Solid State Lasers. Washington, D.C.: OSA, 1993. http://dx.doi.org/10.1364/assl.1993.nl3.
Testo completoNdiaye, C., T. Hara e H. Ito. "Profilometry using a frequency-shifted feedback laser". In 2005 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2005. http://dx.doi.org/10.1109/cleo.2005.202265.
Testo completoCheikh Ndiaye, Takefumi Hara, Frank V. Kowalski e Hiromasa Ito. "Frequency-shifted feedback laser with an SOA". In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4627705.
Testo completoOrozco, Thamar A., e Juan Hernández-Cordero. "Polarization switched frequency shifted feedback fiber laser". In Workshop on Specialty Optical Fibers and Their Applications (WSOF-10), a cura di Juan Hernández-Cordero, Ismael Torres-Gómez e Alexis Méndez. SPIE, 2010. http://dx.doi.org/10.1117/12.868436.
Testo completoYatsenko, Leonid P. "Frequency shifted feedback lasers. Theory, experiment, applications". In 2008 International Conference on Advanced Optoelectronics and Lasers (CAOL). IEEE, 2008. http://dx.doi.org/10.1109/caol.2008.4671993.
Testo completoYatsenko, L. P., V. M. Khodakovsky, V. V. Ogurtsov, G. Bonnet, B. W. Shore e K. Bergmann. "Ranging and interferometry with frequency shifted feedback lasers". In SPIE Proceedings, a cura di Guenter Huber, Vladislav Y. Panchenko e Ivan A. Scherbakov. SPIE, 2005. http://dx.doi.org/10.1117/12.660836.
Testo completoMarc, F., H. Guillet de Chatellus e J. P. Pique. "Solid-state frequency-shifted-feedback laser for astronomy". In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5192087.
Testo completoYoshida, M., M. Fujimoto, M. Nakazawa e H. Ito. "A mode-locked frequency-shifted feedback fiber laser". In CLEO 2001. Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest. IEEE, 2001. http://dx.doi.org/10.1109/cleo.2001.947833.
Testo completoShore, K. A., e D. M. Kane. "Frequency comb generation using semiconductor lasers subject to frequency-shifted feedback". In 1999 Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems (Cat. No.99TH8455). IEEE, 1999. http://dx.doi.org/10.1109/leosst.1999.794652.
Testo completo