Articoli di riviste sul tema "Gated Recurrent Units (GRUs)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Gated Recurrent Units (GRUs)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Dangovski, Rumen, Li Jing, Preslav Nakov, Mićo Tatalović e Marin Soljačić. "Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications". Transactions of the Association for Computational Linguistics 7 (novembre 2019): 121–38. http://dx.doi.org/10.1162/tacl_a_00258.
Testo completoKhadka, Shauharda, Jen Jen Chung e Kagan Tumer. "Neuroevolution of a Modular Memory-Augmented Neural Network for Deep Memory Problems". Evolutionary Computation 27, n. 4 (dicembre 2019): 639–64. http://dx.doi.org/10.1162/evco_a_00239.
Testo completoAkpudo, Ugochukwu Ejike, e Jang-Wook Hur. "A CEEMDAN-Assisted Deep Learning Model for the RUL Estimation of Solenoid Pumps". Electronics 10, n. 17 (25 agosto 2021): 2054. http://dx.doi.org/10.3390/electronics10172054.
Testo completoShen, Wenjuan, e Xiaoling Li. "Facial expression recognition based on bidirectional gated recurrent units within deep residual network". International Journal of Intelligent Computing and Cybernetics 13, n. 4 (12 ottobre 2020): 527–43. http://dx.doi.org/10.1108/ijicc-07-2020-0088.
Testo completoDing, Chen, Zhouyi Zheng, Sirui Zheng, Xuke Wang, Xiaoyan Xie, Dushi Wen, Lei Zhang e Yanning Zhang. "Accurate Air-Quality Prediction Using Genetic-Optimized Gated-Recurrent-Unit Architecture". Information 13, n. 5 (26 aprile 2022): 223. http://dx.doi.org/10.3390/info13050223.
Testo completoDing, Chen, Zhouyi Zheng, Sirui Zheng, Xuke Wang, Xiaoyan Xie, Dushi Wen, Lei Zhang e Yanning Zhang. "Accurate Air-Quality Prediction Using Genetic-Optimized Gated-Recurrent-Unit Architecture". Information 13, n. 5 (26 aprile 2022): 223. http://dx.doi.org/10.3390/info13050223.
Testo completoArunKumar, K. E., Dinesh V. Kalaga, Ch Mohan Sai Kumar, Masahiro Kawaji e Timothy M. Brenza. "Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells". Chaos, Solitons & Fractals 146 (maggio 2021): 110861. http://dx.doi.org/10.1016/j.chaos.2021.110861.
Testo completoOliveira, Pedro, Bruno Fernandes, Cesar Analide e Paulo Novais. "Forecasting Energy Consumption of Wastewater Treatment Plants with a Transfer Learning Approach for Sustainable Cities". Electronics 10, n. 10 (12 maggio 2021): 1149. http://dx.doi.org/10.3390/electronics10101149.
Testo completoFang, Weiguang, Yu Guo, Wenhe Liao, Shaohua Huang, Nengjun Yang e Jinshan Liu. "A Parallel Gated Recurrent Units (P-GRUs) network for the shifting lateness bottleneck prediction in make-to-order production system". Computers & Industrial Engineering 140 (febbraio 2020): 106246. http://dx.doi.org/10.1016/j.cie.2019.106246.
Testo completoFang, Qiang, e Xavier Maldague. "A Method of Defect Depth Estimation for Simulated Infrared Thermography Data with Deep Learning". Applied Sciences 10, n. 19 (29 settembre 2020): 6819. http://dx.doi.org/10.3390/app10196819.
Testo completoChui, Kwok Tai, Brij B. Gupta, Ryan Wen Liu, Xinyu Zhang, Pandian Vasant e J. Joshua Thomas. "Extended-Range Prediction Model Using NSGA-III Optimized RNN-GRU-LSTM for Driver Stress and Drowsiness". Sensors 21, n. 19 (25 settembre 2021): 6412. http://dx.doi.org/10.3390/s21196412.
Testo completoNoh, Seol-Hyun. "Analysis of Gradient Vanishing of RNNs and Performance Comparison". Information 12, n. 11 (25 ottobre 2021): 442. http://dx.doi.org/10.3390/info12110442.
Testo completoJiao, Wenxiang, Michael Lyu e Irwin King. "Real-Time Emotion Recognition via Attention Gated Hierarchical Memory Network". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 05 (3 aprile 2020): 8002–9. http://dx.doi.org/10.1609/aaai.v34i05.6309.
Testo completoSattari, Mohammad Taghi, Halit Apaydin e Shahaboddin Shamshirband. "Performance Evaluation of Deep Learning-Based Gated Recurrent Units (GRUs) and Tree-Based Models for Estimating ETo by Using Limited Meteorological Variables". Mathematics 8, n. 6 (13 giugno 2020): 972. http://dx.doi.org/10.3390/math8060972.
Testo completoAldallal, Ammar. "Toward Efficient Intrusion Detection System Using Hybrid Deep Learning Approach". Symmetry 14, n. 9 (13 settembre 2022): 1916. http://dx.doi.org/10.3390/sym14091916.
Testo completoGim, Juhui, Wansik Choi e Changsun Ahn. "Design of Unscented Kalman Filter with Gated Recurrent Units-based Battery Model for SOC Estimation". Transaction of the Korean Society of Automotive Engineers 30, n. 1 (1 gennaio 2022): 61–68. http://dx.doi.org/10.7467/ksae.2022.30.1.061.
Testo completoKhan, Muhammad Almas, Muazzam A. Khan, Sana Ullah Jan, Jawad Ahmad, Sajjad Shaukat Jamal, Awais Aziz Shah, Nikolaos Pitropakis e William J. Buchanan. "A Deep Learning-Based Intrusion Detection System for MQTT Enabled IoT". Sensors 21, n. 21 (22 ottobre 2021): 7016. http://dx.doi.org/10.3390/s21217016.
Testo completoAslam, Muhammad, Jae-Myeong Lee, Hyung-Seung Kim, Seung-Jae Lee e Sugwon Hong. "Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study". Energies 13, n. 1 (27 dicembre 2019): 147. http://dx.doi.org/10.3390/en13010147.
Testo completoGupta, Manish, e Puneet Agrawal. "Compression of Deep Learning Models for Text: A Survey". ACM Transactions on Knowledge Discovery from Data 16, n. 4 (31 agosto 2022): 1–55. http://dx.doi.org/10.1145/3487045.
Testo completoChoi, Edward, Andy Schuetz, Walter F. Stewart e Jimeng Sun. "Using recurrent neural network models for early detection of heart failure onset". Journal of the American Medical Informatics Association 24, n. 2 (13 agosto 2016): 361–70. http://dx.doi.org/10.1093/jamia/ocw112.
Testo completoCowton, Jake, Ilias Kyriazakis, Thomas Plötz e Jaume Bacardit. "A Combined Deep Learning GRU-Autoencoder for the Early Detection of Respiratory Disease in Pigs Using Multiple Environmental Sensors". Sensors 18, n. 8 (2 agosto 2018): 2521. http://dx.doi.org/10.3390/s18082521.
Testo completoLanera, Corrado, Ileana Baldi, Andrea Francavilla, Elisa Barbieri, Lara Tramontan, Antonio Scamarcia, Luigi Cantarutti, Carlo Giaquinto e Dario Gregori. "A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster". International Journal of Environmental Research and Public Health 19, n. 10 (13 maggio 2022): 5959. http://dx.doi.org/10.3390/ijerph19105959.
Testo completoMeng, Zhaorui, e Xianze Xu. "A Hybrid Short-Term Load Forecasting Framework with an Attention-Based Encoder–Decoder Network Based on Seasonal and Trend Adjustment". Energies 12, n. 24 (4 dicembre 2019): 4612. http://dx.doi.org/10.3390/en12244612.
Testo completoWei, Minghua, e Feng Lin. "A novel multi-dimensional features fusion algorithm for the EEG signal recognition of brain's sensorimotor region activated tasks". International Journal of Intelligent Computing and Cybernetics 13, n. 2 (8 giugno 2020): 239–60. http://dx.doi.org/10.1108/ijicc-02-2020-0019.
Testo completoLv, Yafei, Xiaohan Zhang, Wei Xiong, Yaqi Cui e Mi Cai. "An End-to-End Local-Global-Fusion Feature Extraction Network for Remote Sensing Image Scene Classification". Remote Sensing 11, n. 24 (13 dicembre 2019): 3006. http://dx.doi.org/10.3390/rs11243006.
Testo completoMohsenimanesh, Ahmad, Evgueniy Entchev e Filip Bosnjak. "Hybrid Model Based on an SD Selection, CEEMDAN, and Deep Learning for Short-Term Load Forecasting of an Electric Vehicle Fleet". Applied Sciences 12, n. 18 (16 settembre 2022): 9288. http://dx.doi.org/10.3390/app12189288.
Testo completoHarrou, Fouzi, Abdelkader Dairi, Abdelhafid Zeroual e Ying Sun. "Forecasting of Bicycle and Pedestrian Traffic Using Flexible and Efficient Hybrid Deep Learning Approach". Applied Sciences 12, n. 9 (28 aprile 2022): 4482. http://dx.doi.org/10.3390/app12094482.
Testo completoAhanger, Tariq Ahamed, Abdulaziz Aldaej, Mohammed Atiquzzaman, Imdad Ullah e Muhammad Yousufudin. "Federated Learning-Inspired Technique for Attack Classification in IoT Networks". Mathematics 10, n. 12 (20 giugno 2022): 2141. http://dx.doi.org/10.3390/math10122141.
Testo completoReich, Thilo, David Hulbert e Marcin Budka. "A Model Architecture for Public Transport Networks Using a Combination of a Recurrent Neural Network Encoder Library and a Attention Mechanism". Algorithms 15, n. 9 (14 settembre 2022): 328. http://dx.doi.org/10.3390/a15090328.
Testo completoReza, Selim, Marta Campos Ferreira, José J. M. Machado e João Manuel R. S. Tavares. "Traffic State Prediction Using One-Dimensional Convolution Neural Networks and Long Short-Term Memory". Applied Sciences 12, n. 10 (19 maggio 2022): 5149. http://dx.doi.org/10.3390/app12105149.
Testo completoChen, Zengshun, Chenfeng Yuan, Haofan Wu, Likai Zhang, Ke Li, Xuanyi Xue e Lei Wu. "An Improved Method Based on EEMD-LSTM to Predict Missing Measured Data of Structural Sensors". Applied Sciences 12, n. 18 (8 settembre 2022): 9027. http://dx.doi.org/10.3390/app12189027.
Testo completoChen, Yuren, Yu Chen e Bo Yu. "Speed Distribution Prediction of Freight Vehicles on Mountainous Freeway Using Deep Learning Methods". Journal of Advanced Transportation 2020 (10 gennaio 2020): 1–14. http://dx.doi.org/10.1155/2020/8953182.
Testo completoRavanelli, Mirco, Philemon Brakel, Maurizio Omologo e Yoshua Bengio. "Light Gated Recurrent Units for Speech Recognition". IEEE Transactions on Emerging Topics in Computational Intelligence 2, n. 2 (aprile 2018): 92–102. http://dx.doi.org/10.1109/tetci.2017.2762739.
Testo completoZhang, Yaquan, Qi Wu, Nanbo Peng, Min Dai, Jing Zhang e Hu Wang. "Memory-Gated Recurrent Networks". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 12 (18 maggio 2021): 10956–63. http://dx.doi.org/10.1609/aaai.v35i12.17308.
Testo completoMateus, Balduíno César, Mateus Mendes, José Torres Farinha, Rui Assis e António Marques Cardoso. "Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press". Energies 14, n. 21 (22 ottobre 2021): 6958. http://dx.doi.org/10.3390/en14216958.
Testo completoLi, Xuelong, Aihong Yuan e Xiaoqiang Lu. "Multi-modal gated recurrent units for image description". Multimedia Tools and Applications 77, n. 22 (15 marzo 2018): 29847–69. http://dx.doi.org/10.1007/s11042-018-5856-1.
Testo completoJing, Li, Caglar Gulcehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic e Yoshua Bengio. "Gated Orthogonal Recurrent Units: On Learning to Forget". Neural Computation 31, n. 4 (aprile 2019): 765–83. http://dx.doi.org/10.1162/neco_a_01174.
Testo completoPARDEDE, JASMAN, e MUHAMMAD FAUZAN RASPATI. "Gated Recurrent Units dalam Mendeteksi Obstructive Sleep Apnea". MIND Journal 6, n. 2 (12 dicembre 2021): 221–35. http://dx.doi.org/10.26760/mindjournal.v6i2.221-235.
Testo completoTan, Yi-Fei, Xiaoning Guo e Soon-Chang Poh. "Time series activity classification using gated recurrent units". International Journal of Electrical and Computer Engineering (IJECE) 11, n. 4 (1 agosto 2021): 3551. http://dx.doi.org/10.11591/ijece.v11i4.pp3551-3558.
Testo completoOnyekpe, Uche, Vasile Palade, Stratis Kanarachos e Stavros-Richard G. Christopoulos. "A Quaternion Gated Recurrent Unit Neural Network for Sensor Fusion". Information 12, n. 3 (9 marzo 2021): 117. http://dx.doi.org/10.3390/info12030117.
Testo completoHosseini, Majid, Satya Katragadda, Jessica Wojtkiewicz, Raju Gottumukkala, Anthony Maida e Terrence Lynn Chambers. "Direct Normal Irradiance Forecasting Using Multivariate Gated Recurrent Units". Energies 13, n. 15 (31 luglio 2020): 3914. http://dx.doi.org/10.3390/en13153914.
Testo completoZeeshan Ansari, Mohd, Tanvir Ahmad, Mirza Mohd Sufyan Beg e Faiyaz Ahmad. "Hindi to English transliteration using multilayer gated recurrent units". Indonesian Journal of Electrical Engineering and Computer Science 27, n. 2 (1 agosto 2022): 1083. http://dx.doi.org/10.11591/ijeecs.v27.i2.pp1083-1090.
Testo completoWojtkiewicz, Jessica, Matin Hosseini, Raju Gottumukkala e Terrence Lynn Chambers. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units". Energies 12, n. 21 (24 ottobre 2019): 4055. http://dx.doi.org/10.3390/en12214055.
Testo completoBonassi, Fabio, Marcello Farina e Riccardo Scattolini. "On the stability properties of Gated Recurrent Units neural networks". Systems & Control Letters 157 (novembre 2021): 105049. http://dx.doi.org/10.1016/j.sysconle.2021.105049.
Testo completoLobacheva, Ekaterina, Nadezhda Chirkova, Alexander Markovich e Dmitry Vetrov. "Structured Sparsification of Gated Recurrent Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 4989–96. http://dx.doi.org/10.1609/aaai.v34i04.5938.
Testo completoJangir, Mahendra Kumar, e Karan Singh. "HARGRURNN: Human activity recognition using inertial body sensor gated recurrent units recurrent neural network". Journal of Discrete Mathematical Sciences and Cryptography 22, n. 8 (17 novembre 2019): 1577–87. http://dx.doi.org/10.1080/09720529.2019.1696552.
Testo completoLiu, Juntao, Caihua Wu e Junwei Wang. "Gated recurrent units based neural network for time heterogeneous feedback recommendation". Information Sciences 423 (gennaio 2018): 50–65. http://dx.doi.org/10.1016/j.ins.2017.09.048.
Testo completodo Carmo Nogueira, Tiago, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior e Matheus Rudolfo Diedrich Ullmann. "Reference-based model using multimodal gated recurrent units for image captioning". Multimedia Tools and Applications 79, n. 41-42 (15 agosto 2020): 30615–35. http://dx.doi.org/10.1007/s11042-020-09539-5.
Testo completoRehmer, Alexander, e Andreas Kroll. "On the vanishing and exploding gradient problem in Gated Recurrent Units". IFAC-PapersOnLine 53, n. 2 (2020): 1243–48. http://dx.doi.org/10.1016/j.ifacol.2020.12.1342.
Testo completoSoliman, Hatem, Izhar Ahmed Khan e Yasir Hussain. "Learning to transfer knowledge from RDF Graphs with gated recurrent units". Intelligent Data Analysis 26, n. 3 (18 aprile 2022): 679–94. http://dx.doi.org/10.3233/ida-215919.
Testo completo