Letteratura scientifica selezionata sul tema "High frequency probe tone"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "High frequency probe tone".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "High frequency probe tone"
Nelson, David A., e Todd W. Fortune. "High-Level Psychophysical Tuning Curves". Journal of Speech, Language, and Hearing Research 34, n. 2 (aprile 1991): 360–73. http://dx.doi.org/10.1044/jshr.3402.360.
Testo completoKordus, Monika, e Borys Kowalewski. "Effects of Low- and High-Frequency Side Bands of Notched Noise on Masking and Auditory Filter Shape at Very High Frequencies". Archives of Acoustics 40, n. 3 (1 settembre 2015): 329–36. http://dx.doi.org/10.1515/aoa-2015-0036.
Testo completoSprague, Barbara H., Terry L. Wiley e Robert Goldstein. "Tympanometric and Acoustic-Reflex Studies in Neonates". Journal of Speech, Language, and Hearing Research 28, n. 2 (giugno 1985): 265–72. http://dx.doi.org/10.1044/jshr.2802.265.
Testo completoYing-ying, Shang, Ni Dao-feng e Liu Shi-lin. "High- and Low-Frequency Probe Tone Tympanometry in Chinese Infants". Journal of Otology 2, n. 1 (giugno 2007): 42–51. http://dx.doi.org/10.1016/s1672-2930(07)50008-5.
Testo completoLutolf, John J., Honor O'Malley e Shlomo Silman. "The Effects of Probe-Tone Frequency on the Acoustic-Reflex Growth Function". Journal of the American Academy of Audiology 14, n. 02 (febbraio 2003): 109–18. http://dx.doi.org/10.3766/jaaa.14.2.6.
Testo completoSinex, D. G., e D. C. Havey. "Neural mechanisms of tone-on-tone masking: patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in the chinchilla auditory nerve". Journal of Neurophysiology 56, n. 6 (1 dicembre 1986): 1763–80. http://dx.doi.org/10.1152/jn.1986.56.6.1763.
Testo completoAbdala, Carolina, Ping Luo e Yeini Guardia. "Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns". Trends in Hearing 23 (gennaio 2019): 233121651988922. http://dx.doi.org/10.1177/2331216519889226.
Testo completoKei, Joseph, Julie Allison-Levick, Jacqueline Dockray, Rachel Harrys, Christina Kirkegard, Janet Wong, Marion Maurer, Jayne Hegarty, June Young e David Tudehope. "High-Frequency (1000 Hz) Tympanometry in Normal Neonates". Journal of the American Academy of Audiology 14, n. 01 (gennaio 2003): 020–28. http://dx.doi.org/10.3766/jaaa.14.1.4.
Testo completoGupta, Dipti, e C. S. Vanaja. "Effect of age on acoustic reflex thresholds in neonates and infants with normal hearing". International Journal of Otorhinolaryngology and Head and Neck Surgery 7, n. 5 (23 aprile 2021): 746. http://dx.doi.org/10.18203/issn.2454-5929.ijohns20211421.
Testo completoFernandez-Prieto, Irune, Charles Spence, Ferran Pons e Jordi Navarra. "Does Language Influence the Vertical Representation of Auditory Pitch and Loudness?" i-Perception 8, n. 3 (giugno 2017): 204166951771618. http://dx.doi.org/10.1177/2041669517716183.
Testo completoTesi sul tema "High frequency probe tone"
Silva, Kilza de Arruda Lyra e. "Achados timpanométricos em neonatos:medidas e interpretações". Pontifícia Universidade Católica de São Paulo, 2005. https://tede2.pucsp.br/handle/handle/11851.
Testo completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Introduction. Early identification and diagnosis of hearing impairment in newborns aim at establishing adequate amplification and intervention, as early as possible, in order to reduce negative consequences in language, individual and social development of the child. Tympanometry is part of a test battery for the diagnosis of hearing losses and is used to differentiate between conductive and sensorineural hearing losses. Before six months of age the results obtained using a probe tone of 226 Hz can be misleading. Therefore many studies have been done assessing the use of a high frequency probe tone of 678 and 1000 Hz aiming at a more valid procedure. Goal. The goal of the present study was to describe and discuss interpretations and measurements obtained in timpanometry of normal hearing neonates, using tone probes of 226, 678 and 1000 Hz. The following aspects were described: tympanometric curve type, Peak Compensated Static Acoustic Admittance (Ytm), Tympanometric Width (TW), Tympanometric Peak Pressure (PPT) and Equivalent Ear Canal Volume (Vea). Method. All subjects had normal otoacoustic emissions and no risk for hearing impairment. The curves were obtained in a quiet room using a middle ear analyzer GSI 33 II with tone probes of 226, 678 and 1000 Hz. All babies were calm or sleeping during the test. Results. 110 neonates were tested with the three tone probes therefore 660 curves were obtained. Age range was 6 to 30 days (58 boys and 52 girls). When a probe tone of 226 Hz was used, single peak curve was observed in 105 (47,7%) ears and double peak was found in 115 (52,3%) ears. Results with a probe tone of 678 Hz, revealed 56 (25,4%) single peak curves, 16 (7,3%) inverted curves (I) and 148 (67,3%) asymmetric (AS). Results with a probe tone of 1000 Hz showed 156 (70,9%) single peak tympanograms, 62 (28,2%) asymmetric and 2 (0,9%) inverted. Among the quantitative measurements analyzed, Vea demonstrated a significant difference in gender with probe tones of 226 Hz. Ytm, was also significantly different by gender with the probe tone of 1000 Hz, larger for the boys. For all the other variables no significant difference was found for ear or gender. When the curves were analyzed using the protocol proposed by Sutton et al (2002), 208 (94,5%) ears were considered normal and 12 (5,5%) abnormal with the probe tone of 678 Hz. For the probe tone of 1000 Hz, 217 (98,6%) ears were considered normal, and just 3 (1,4%) of the tympanograms were classified as abnormal. Conclusion. The tympanometric findings in this study were similar to those described in the literature with prevalence of single peaked curves for the probe tone of 1000 Hz and a similar number of single and double peaked curves with the probe tone of 226 Hz. The quantitative measurements were, in general, in agreement with the literature reviewed. The interpretation of the results with the probe tone of 1000 Hz using the protocol suggested by Sutton et al (2002) was the method that allowed the classification of normal for the greatest percentage of the ears tested suggesting that it can be very useful when neonates are evaluated. Further research with this protocol is suggested.
Introdução. A identificação e a caracterização precoce da perda auditiva em neonatos visam estabelecer condições para uma intervenção adequada, tão cedo quanto possível, a fim de reduzir as conseqüências negativas no desenvolvimento pessoal e social da criança. A timpanometria faz parte da bateria de testes do diagnóstico da perda auditiva e é utilizada para avaliação da orelha média, para diferenciar perdas condutivas de neurossensoriais. A timpanometria realizada em neonatos com menos de seis meses, quando executadas com tom sonda de baixa freqüência (226 Hz), pode gerar dúvidas, pois nesse tipo de sonda, neonatos com otite média podem revelar timpanograma aparentemente normal. Com isso, tem-se investigado o uso de tom sonda de alta freqüência (678 e 1000 Hz) em busca de resultados mais confiáveis. Objetivo. Descrever e analisar interpretações de características e medidas obtidas na timpanometria de neonatos ouvintes com sonda de tom prova de 226, 678 e 1000 Hz. São descritos os seguintes aspectos do timpanograma: características da curva timpanométrica, Admitância Acústica Estática de Pico Compensado na Altura da Membrana Timpânica (Ymt), Largura Timpanométrica (LT), Pressão do Pico Timpanométrico (PPT) e Volume Equivalente do Meato Acústico Externo (Vea). Metodologia. Os sujeitos analisados passaram por uma triagem que incluiu anamnese e teste de emissões otoacústicas. Para a realização das timpanometrias foi utilizado o analisador de orelha média GSI-33-II, com tons sonda de 226, 678 e 1000 Hz, em sala silenciosa e com a criança em estado tranqüilo. Resultados. Foram obtidos timpanogramas de 110 neonatos ouvintes com 6 a 30 dias de idade (58 meninos e 52 meninas), perfazendo um total de 660 timpanogramas. No tom sonda de 226 Hz, o tipo de curva pico único (A) apareceu em 105 (47,7%) orelhas e o tipo pico duplo (PD) em 115 (52,3%) orelhas. Os resultados na freqüência de 678 Hz indicaram 56 (25,5%) ocorrências de curva tipo A, 16 (7,3%) do tipo invertida (I) e 148 (67,3%) curvas do tipo assimétrica (AS). Na sonda de 1000 Hz foram registradas 156 (70,9%) curvas do tipo A, 62 (28,2%) do tipo AS e 2 (0,9%) do tipo I. Dentre as variáveis quantitativas analisadas, apenas o Vea apresentou efeito de significância por orelha na sonda de tom prova de 1000 Hz. O Vea apresentou efeito de significância em relação ao gênero nas freqüências de 226 e 1000 Hz. A Ymt, também, apresentou efeito de significância por gênero, na sonda de 1000 Hz, sendo maior nos meninos. Nas demais variáveis não foi encontrado efeito de significância nem por orelha e nem por gênero. Quando interpretados de acordo com o protocolo recomendado por Sutton et al (2002), obteve-se, em 678 Hz, 208 (94,5%) orelhas com resultado normal, enquanto 12 (5,5%) foram interpretadas como anormais. Na sonda de tom prova de 1000 Hz, 217 (98,6%) das orelhas foram normais, e apenas 3 (1,4%) dos timpanogramas foram classificados como anormais. Conclusão. Os achados timpanométricos, tanto em 226 Hz quanto em 1000 Hz, foram compatíveis com os resultados presentes na literatura, que descrevem alta ocorrência de curvas do tipo A em sonda de 1000 Hz e equilíbrio entre os tipos de curva A e PD em sonda de 226 Hz. Os dados registrados para as medidas quantitativas, também, estiveram de acordo com o indicado na literatura. A interpretação das curvas timpanométricas com sonda de 1000 Hz utilizando o protocolo proposto por Sutton et al (2002) foi a que possibilitou a classificação de normal na maior porcentagem das orelhas avaliadas, sugerindo que este pode ser um método de grande utilidade na avaliação de bebês. Recomenda-se que pesquisas futuras com esse protocolo sejam realizadas.
Gredmaier, Ludwig Konrad. "The effect of probe tone duration on psychoacoustic frequency selectivity". Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396142.
Testo completoLavoie, Kimberly J. "High Frequency Pure Tone Audiometry and High Frequency Distortion Product Otoacoustic Emissions: A Correlational Analysis". PDXScholar, 2003. https://pdxscholar.library.pdx.edu/open_access_etds/1688.
Testo completoLepidis, Polichronis. "High resolution frequency analysis in scanning probe microscopy". [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=96834674X.
Testo completoMeier, David Alan. "The Design and Evaluation of a High Frequency Fore-Aft Probe". Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/35650.
Testo completoMaster of Science
Salomon, Michael. "Properties of Gravity Probe B gyroscopes obtained from high frequency SQUID signal /". May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Testo completoPopernack, Thomas G. Jr. "Development of a data reduction method for a high frequency angle probe". Thesis, Virginia Tech, 1987. http://hdl.handle.net/10919/45881.
Testo completoA data reduction method has been developed and tested for a high frequency angle probe. The angle probe is designed for unsteady aerodynamic measurements in transonic cryogenic wind tunnels. The probe measures time-resolved total pressure, static pressure, angle of attack, and yaw angle from readings of four pressure transducers. The unique feature of this probe, as compared to a conventional multi-hole directional probe, is that the four high frequency response silicon pressure transducers are mounted flush on the probe tip. The data reduction method is basically an interpolation routine of calibration curves. The calibration curves consist of experimentally determined non-dimensional flow coefficients.
Two experiments were conducted to test the probe and the data reduction method.
The first experiment tested the angle probe in a Karman vortex street shed from a cylinder.
In the second experiment, the angle probe was placed in an open air jet with an
exit Mach number of 0.42. Plots of the time-resolved measurements and the Fast
Fourier Transform analysis were made for each test.
Master of Science
Murnane, Owen D., J. K. Kelly, B. Prieve e Owen D. Murnane. "Tone-Burst-Evoked Otoacoustic Emissions and the Influence of High Frequency Hearing Loss in Humans". Digital Commons @ East Tennessee State University, 2000. https://dc.etsu.edu/etsu-works/1921.
Testo completoHaji, Amyn. "The utilisation of high frequency mini probe colonoscopic ultrasound in the assessment of colorectal disease". Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/the-utilisation-of-high-frequency-mini-probe-colonoscopic-ultrasound-in-the-assessment-of-colorectal-disease(6d7ecbfc-421e-4cae-afad-5e3cf8906ce0).html.
Testo completoBoone, Justin. "Through Wafer 3D Vertical Micro-Coaxial Probe for High Frequency Material Characterization and Millimeter Wave Packaging Systems". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/897.
Testo completoLibri sul tema "High frequency probe tone"
Gray, Pamela S. The effects of rise-time and frequency on the auditory brainstem response using high-frequency tone-bursts. 1987.
Cerca il testo completoGray, Pamela S. The effects of rise-time and frequency on the auditory brainstem response using high-frequency tone-bursts. 1987.
Cerca il testo completoTurim, Maureen, e Michael Walsh. Sound Events. A cura di John Richardson, Claudia Gorbman e Carol Vernallis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oxfordhb/9780199733866.013.0026.
Testo completoCapitoli di libri sul tema "High frequency probe tone"
Paulson, C. A., e D. W. Van Der Weide. "Near-Field High-Frequency Probing". In Scanning Probe Microscopy, 315–45. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-28668-6_11.
Testo completoKawakatsu, Hideki. "High-Frequency Dynamic Force Microscopy". In Applied Scanning Probe Methods V, 99–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-37316-2_5.
Testo completoRutten, W. L. C., e V. F. Prijs. "Compound Action Potential (AP) Tuning in Man and Guinea Pig: Effect of Probe Tone Level and Hearing Loss". In Auditory Frequency Selectivity, 161–70. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2247-4_19.
Testo completoKakemoto, Hirofumi, Song Min Nam, Satoshi Wada e Takaaki Tsurumi. "High Frequency Dielectric Mapping Using Un-Contact Probe for Dielectric Materials". In Electroceramics in Japan IX, 189–92. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-411-1.189.
Testo completoAngelsen, B. A. J., J. Hoem, S. Dørum, J. Chapman, E. Grube, U. Gerckens, C. A. Visser e J. Vandenbogaerde. "High-Frequency Annular Array Transesophageal Probe for High-Resolution Imaging and Continuous Wave Doppler Measurements". In Transesophageal Echocardiography, 13–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74257-6_2.
Testo completoPolli, D., D. Brida, G. Lanzani e G. Cerullo. "Observation of High-Frequency Coherent Vibrational Motion with Strongly Chirped Probe Pulses". In Springer Series in Chemical Physics, 337–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_109.
Testo completoRavez, M., M. Ourak, M. Ouaftouh, W. J. Xu e B. Nongaillard. "An Active Load Backing Transducer for High Frequency Ultrasonic Probe: Imaging Systems Applications". In Acoustical Imaging, 345–51. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2958-3_47.
Testo completoRout, Anil Kumar, Santosh Kumar Hotta, Niranjan Sahoo, Pankaj Kalita e Vinayak Kulkarni. "Coaxial Thermal Probe for High-Frequency Periodic Response in an IC Engine Test Rig". In Proceedings of the 7th International Conference on Advances in Energy Research, 805–13. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5955-6_76.
Testo completoKakemoto, Hirofumi, Jianyong Li, Takakiyo Harigai, Song Min Nam, Satoshi Wada e Takaaki Tsurumi. "High Frequency Dielectric Permittivity Measurement of Dielectric Layer of MLCC Using Non-Contact Probe". In Electroceramics in Japan X, 243–46. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-449-9.243.
Testo completoIppoliti, Carla, Susanna Tora, Carla Giansante, Romolo Salini, Federico Filipponi, Emanuela Scamosci, Massimo Petrini, Nicola Di Deo e Annamaria Conte. "Sentinel-2 e campionamenti in situ per il monitoraggio delle acque marine dell’Abruzzo: primi risultati". In Proceedings e report, 557–68. Florence: Firenze University Press, 2020. http://dx.doi.org/10.36253/978-88-5518-147-1.56.
Testo completoAtti di convegni sul tema "High frequency probe tone"
D'Amico, D., M. Scarselli, V. Foglietti, P. Chiaradia, P. Lugli e C. Di Natale. "HIGH FREQUENCY KELVIN PROBE INSTRUMENTATION". In Proceedings of the 7th Italian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776457_0011.
Testo completoBomse, David. "High-Frequency Two-Tone FM Absorption Spectroscopy". In 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4909.
Testo completoSiegel, Jonathan H., e Karolina K. Charaziak. "High-frequency tone-pip-evoked otoacoustic emissions in chinchillas". In MECHANICS OF HEARING: PROTEIN TO PERCEPTION: Proceedings of the 12th International Workshop on the Mechanics of Hearing. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4939400.
Testo completoJacob, M. E., D. A. Miller e L. Forbes. "Ultra low capacitance high frequency IC probe". In NanoScience + Engineering, a cura di Michael T. Postek e John A. Allgair. SPIE, 2008. http://dx.doi.org/10.1117/12.792137.
Testo completoYanagida, Tomonori, Shohei Shibuya, Haruo Kobayashi e Kazumi Hatayama. "High-frequency low-distortion one-tone and two-tone signal generation using arbitrary waveform generator". In 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2016. http://dx.doi.org/10.1109/icsict.2016.7999029.
Testo completoJohnson, R. W. "Error correction coding for serial-tone HF transmission". In 7th International Conference on High Frequency Radio Systems and Techniques. IEE, 1997. http://dx.doi.org/10.1049/cp:19970765.
Testo completoChambon, Hugo, Pascal Nicolay, Thomas Moldaschl, Markus Zauner, Claude Humbert, Aoun AminAwan, Maximilian Schiek, Thomas Metzger e Ayech Benjeddou. "High Frequency Optical Probe for BAW/SAW Devices". In 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8580056.
Testo completoTang, Zhi-Yong, Tian-Hao Song, Li Ding e Xing-Chang Wei. "A High Frequency Probe with End Launch Structure". In 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2020. http://dx.doi.org/10.1109/apcap50217.2020.9245958.
Testo completoMorris, S. P. "Coded-modulation enhancements to an HF single-tone modem". In 7th International Conference on High Frequency Radio Systems and Techniques. IEE, 1997. http://dx.doi.org/10.1049/cp:19970766.
Testo completoHa, Kyoung Ku, Tae Bin Jeong e Shin Hyoung Kang. "Experimental Study on Aero-Acoustic Characteristics of a Centrifugal Compressor and an Optimal Design for Noise Reduction". In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72421.
Testo completoRapporti di organizzazioni sul tema "High frequency probe tone"
Lavoie, Kimberly. High Frequency Pure Tone Audiometry and High Frequency Distortion Product Otoacoustic Emissions: A Correlational Analysis. Portland State University Library, gennaio 2000. http://dx.doi.org/10.15760/etd.1688.
Testo completoHart, Carl R., e Gregory W. Lyons. A Measurement System for the Study of Nonlinear Propagation Through Arrays of Scatterers. Engineer Research and Development Center (U.S.), novembre 2020. http://dx.doi.org/10.21079/11681/38621.
Testo completo