Articoli di riviste sul tema "HYBRID CNN-RNN MODEL"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "HYBRID CNN-RNN MODEL".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Zaheer, Shahzad, Nadeem Anjum, Saddam Hussain, Abeer D. Algarni, Jawaid Iqbal, Sami Bourouis e Syed Sajid Ullah. "A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model". Mathematics 11, n. 3 (22 gennaio 2023): 590. http://dx.doi.org/10.3390/math11030590.
Testo completoAshraf, Mohsin, Fazeel Abid, Ikram Ud Din, Jawad Rasheed, Mirsat Yesiltepe, Sook Fern Yeo e Merve T. Ersoy. "A Hybrid CNN and RNN Variant Model for Music Classification". Applied Sciences 13, n. 3 (22 gennaio 2023): 1476. http://dx.doi.org/10.3390/app13031476.
Testo completoKrishnan, V. Gokula, M. V. Vijaya Saradhi, T. A. Mohana Prakash, K. Gokul Kannan e AG Noorul Julaiha. "Development of Deep Learning based Intelligent Approach for Credit Card Fraud Detection". International Journal on Recent and Innovation Trends in Computing and Communication 10, n. 12 (31 dicembre 2022): 133–39. http://dx.doi.org/10.17762/ijritcc.v10i12.5894.
Testo completoYu, Dian, e Shouqian Sun. "A Systematic Exploration of Deep Neural Networks for EDA-Based Emotion Recognition". Information 11, n. 4 (15 aprile 2020): 212. http://dx.doi.org/10.3390/info11040212.
Testo completoBehera, Bibhuti Bhusana, Binod Kumar Pattanayak e Rajani Kanta Mohanty. "Deep Ensemble Model for Detecting Attacks in Industrial IoT". International Journal of Information Security and Privacy 16, n. 1 (1 gennaio 2022): 1–29. http://dx.doi.org/10.4018/ijisp.311467.
Testo completoCheng, Yepeng, Zuren Liu e Yasuhiko Morimoto. "Attention-Based SeriesNet: An Attention-Based Hybrid Neural Network Model for Conditional Time Series Forecasting". Information 11, n. 6 (5 giugno 2020): 305. http://dx.doi.org/10.3390/info11060305.
Testo completoPawar, Mahendra Eknath, Rais Allauddin Mulla, Sanjivani H. Kulkarni, Sajeeda Shikalgar, Harikrishna B. Jethva e Gunvant A. Patel. "A Novel Hybrid AI Federated ML/DL Models for Classification of Soil Components". International Journal on Recent and Innovation Trends in Computing and Communication 10, n. 1s (10 dicembre 2022): 190–99. http://dx.doi.org/10.17762/ijritcc.v10i1s.5823.
Testo completoUTKU, Anıl. "Kentsel Trafik Tahminine Yönelik Derin Öğrenme Tabanlı Verimli Bir Hibrit Model". Bilişim Teknolojileri Dergisi 16, n. 2 (30 aprile 2023): 107–17. http://dx.doi.org/10.17671/gazibtd.1167140.
Testo completoLiang, Youzhi, Wen Liang e Jianguo Jia. "Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid CNN-RNN". Advances in Artificial Intelligence and Machine Learning 03, n. 02 (2023): 1110–22. http://dx.doi.org/10.54364/aaiml.2023.1165.
Testo completoZhang, Langlang, Jun Xie, Xinxiu Liu, Wenbo Zhang e Pan Geng. "Research on water quality prediction based on PE-CNN-GRU hybrid model". E3S Web of Conferences 393 (2023): 02014. http://dx.doi.org/10.1051/e3sconf/202339302014.
Testo completoKhamparia, Aditya, Babita Pandey, Shrasti Tiwari, Deepak Gupta, Ashish Khanna e Joel J. P. C. Rodrigues. "An Integrated Hybrid CNN–RNN Model for Visual Description and Generation of Captions". Circuits, Systems, and Signal Processing 39, n. 2 (11 novembre 2019): 776–88. http://dx.doi.org/10.1007/s00034-019-01306-8.
Testo completoUly, Novem, Hendry Hendry e Ade Iriani. "CNN-RNN Hybrid Model for Diagnosis of COVID-19 on X-Ray Imagery". Digital Zone: Jurnal Teknologi Informasi dan Komunikasi 14, n. 1 (27 maggio 2023): 57–67. http://dx.doi.org/10.31849/digitalzone.v14i1.13668.
Testo completoArshad, Muhammad Zeeshan, Ankhzaya Jamsrandorj, Jinwook Kim e Kyung-Ryoul Mun. "Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor". Sensors 22, n. 21 (27 ottobre 2022): 8226. http://dx.doi.org/10.3390/s22218226.
Testo completoGong, Liyun, Miao Yu, Vassilis Cutsuridis, Stefanos Kollias e Simon Pearson. "A Novel Model Fusion Approach for Greenhouse Crop Yield Prediction". Horticulturae 9, n. 1 (20 dicembre 2022): 5. http://dx.doi.org/10.3390/horticulturae9010005.
Testo completoKang, Taehyung, Dae Yeong Lim, Hilal Tayara e Kil To Chong. "Forecasting of Power Demands Using Deep Learning". Applied Sciences 10, n. 20 (16 ottobre 2020): 7241. http://dx.doi.org/10.3390/app10207241.
Testo completoHasbullah, Sumayyah, Mohd Soperi Mohd Zahid e Satria Mandala. "Detection of Myocardial Infarction Using Hybrid Models of Convolutional Neural Network and Recurrent Neural Network". BioMedInformatics 3, n. 2 (15 giugno 2023): 478–92. http://dx.doi.org/10.3390/biomedinformatics3020033.
Testo completoRong, Guangzhi, Kaiwei Li, Yulin Su, Zhijun Tong, Xingpeng Liu, Jiquan Zhang, Yichen Zhang e Tiantao Li. "Comparison of Tree-Structured Parzen Estimator Optimization in Three Typical Neural Network Models for Landslide Susceptibility Assessment". Remote Sensing 13, n. 22 (20 novembre 2021): 4694. http://dx.doi.org/10.3390/rs13224694.
Testo completoSharma, Richa, Sudha Morwal e Basant Agarwal. "Entity-Extraction Using Hybrid Deep-Learning Approach for Hindi text". International Journal of Cognitive Informatics and Natural Intelligence 15, n. 3 (luglio 2021): 1–11. http://dx.doi.org/10.4018/ijcini.20210701.oa1.
Testo completoGuo, Yanan, Xiaoqun Cao, Bainian Liu e Kecheng Peng. "El Niño Index Prediction Using Deep Learning with Ensemble Empirical Mode Decomposition". Symmetry 12, n. 6 (1 giugno 2020): 893. http://dx.doi.org/10.3390/sym12060893.
Testo completoMas-Pujol, Sergi, Esther Salamí e Enric Pastor. "RNN-CNN Hybrid Model to Predict C-ATC CAPACITY Regulations for En-Route Traffic". Aerospace 9, n. 2 (10 febbraio 2022): 93. http://dx.doi.org/10.3390/aerospace9020093.
Testo completoLapa, Paulo, Mauro Castelli, Ivo Gonçalves, Evis Sala e Leonardo Rundo. "A Hybrid End-to-End Approach Integrating Conditional Random Fields into CNNs for Prostate Cancer Detection on MRI". Applied Sciences 10, n. 1 (2 gennaio 2020): 338. http://dx.doi.org/10.3390/app10010338.
Testo completoBeseiso, Majdi. "Word and Character Information Aware Neural Model for Emotional Analysis". Recent Patents on Computer Science 12, n. 2 (25 febbraio 2019): 142–47. http://dx.doi.org/10.2174/2213275911666181119112645.
Testo completoAmer, Rusul, e Ahmed Al Tmeme. "Hybrid Deep Learning Model for Singing Voice Separation". MENDEL 27, n. 2 (21 dicembre 2021): 44–50. http://dx.doi.org/10.13164/mendel.2021.2.044.
Testo completoZhang, Dong, e Qichuan Tian. "A Novel Fuzzy Optimized CNN-RNN Method for Facial Expression Recognition". Elektronika ir Elektrotechnika 27, n. 5 (27 ottobre 2021): 67–74. http://dx.doi.org/10.5755/j02.eie.29648.
Testo completoWang, Yu, Yining Sun, Zuchang Ma, Lisheng Gao e Yang Xu. "A Hybrid Model for Named Entity Recognition on Chinese Electronic Medical Records". ACM Transactions on Asian and Low-Resource Language Information Processing 20, n. 2 (23 aprile 2021): 1–12. http://dx.doi.org/10.1145/3436819.
Testo completoRoy, Bishwajit, Lokesh Malviya, Radhikesh Kumar, Sandip Mal, Amrendra Kumar, Tanmay Bhowmik e Jong Wan Hu. "Hybrid Deep Learning Approach for Stress Detection Using Decomposed EEG Signals". Diagnostics 13, n. 11 (1 giugno 2023): 1936. http://dx.doi.org/10.3390/diagnostics13111936.
Testo completoYadav, Omprakash, Rachael Dsouza, Rhea Dsouza e Janice Jose. "Soccer Action video Classification using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 10, n. 6 (30 giugno 2022): 1060–63. http://dx.doi.org/10.22214/ijraset.2022.43929.
Testo completoMekruksavanich, Sakorn, e Anuchit Jitpattanakul. "Deep Convolutional Neural Network with RNNs for Complex Activity Recognition Using Wrist-Worn Wearable Sensor Data". Electronics 10, n. 14 (14 luglio 2021): 1685. http://dx.doi.org/10.3390/electronics10141685.
Testo completoFarid, Ahmed Bahaa, Enas Mohamed Fathy, Ahmed Sharaf Eldin e Laila A. Abd-Elmegid. "Software defect prediction using hybrid model (CBIL) of convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM)". PeerJ Computer Science 7 (16 novembre 2021): e739. http://dx.doi.org/10.7717/peerj-cs.739.
Testo completoÇAVDAR, İsmail, e Vahid FARYAD. "New Design of a Supervised Energy Disaggregation Model Based on the Deep Neural Network for a Smart Grid". Energies 12, n. 7 (29 marzo 2019): 1217. http://dx.doi.org/10.3390/en12071217.
Testo completoWEN, HAO, WENJIAN YU, YUANQING WU, SHUAI YANG e XIAOLONG LIU. "A SCALABLE HYBRID MODEL FOR ATRIAL FIBRILLATION DETECTION". Journal of Mechanics in Medicine and Biology 21, n. 05 (17 aprile 2021): 2140021. http://dx.doi.org/10.1142/s0219519421400212.
Testo completoRafi, Quazi Ghulam, Mohammed Noman, Sadia Zahin Prodhan, Sabrina Alam e Dip Nandi. "Comparative Analysis of Three Improved Deep Learning Architectures for Music Genre Classification". International Journal of Information Technology and Computer Science 13, n. 2 (8 aprile 2021): 1–14. http://dx.doi.org/10.5815/ijitcs.2021.02.01.
Testo completoDhar, Puja, Vijay Kumar Garg e Mohammad Anisur Rahman. "Enhanced Feature Extraction-based CNN Approach for Epileptic Seizure Detection from EEG Signals". Journal of Healthcare Engineering 2022 (16 marzo 2022): 1–14. http://dx.doi.org/10.1155/2022/3491828.
Testo completoHe, Yijuan, Jidong Lv, Hongjie Liu e Tao Tang. "Toward the Trajectory Predictor for Automatic Train Operation System Using CNN–LSTM Network". Actuators 11, n. 9 (31 agosto 2022): 247. http://dx.doi.org/10.3390/act11090247.
Testo completoUmair, Muhammad, Muhammad Zubair, Farhan Dawood, Sarim Ashfaq, Muhammad Shahid Bhatti, Mohammad Hijji e Abid Sohail. "A Multi-Layer Holistic Approach for Cursive Text Recognition". Applied Sciences 12, n. 24 (9 dicembre 2022): 12652. http://dx.doi.org/10.3390/app122412652.
Testo completoMoradzadeh, Arash, Sahar Zakeri, Waleed A. Oraibi, Behnam Mohammadi-Ivatloo, Zulkurnain Abdul-Malek e Reza Ghorbani. "Non-Intrusive Load Monitoring of Residential Loads via Laplacian Eigenmaps and Hybrid Deep Learning Procedures". Sustainability 14, n. 22 (11 novembre 2022): 14898. http://dx.doi.org/10.3390/su142214898.
Testo completoBao, Zhengyi, Jiahao Jiang, Chunxiang Zhu e Mingyu Gao. "A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery". Energies 15, n. 12 (16 giugno 2022): 4399. http://dx.doi.org/10.3390/en15124399.
Testo completoAlrasheedi, Abdullah, e Abdulaziz Almalaq. "Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting". Mathematics 10, n. 15 (28 luglio 2022): 2666. http://dx.doi.org/10.3390/math10152666.
Testo completoTran Quang, Duy, e Sang Hoon Bae. "A Hybrid Deep Convolutional Neural Network Approach for Predicting the Traffic Congestion Index". Promet - Traffic&Transportation 33, n. 3 (31 maggio 2021): 373–85. http://dx.doi.org/10.7307/ptt.v33i3.3657.
Testo completoHong, Taekeun, Jin-A. Choi, Kiho Lim e Pankoo Kim. "Enhancing Personalized Ads Using Interest Category Classification of SNS Users Based on Deep Neural Networks". Sensors 21, n. 1 (30 dicembre 2020): 199. http://dx.doi.org/10.3390/s21010199.
Testo completoRajagukguk, Rial A., Raden A. A. Ramadhan e Hyun-Jin Lee. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power". Energies 13, n. 24 (15 dicembre 2020): 6623. http://dx.doi.org/10.3390/en13246623.
Testo completoSelvarani, Renjith Vijayakumar, e Paul Subha Hency Jose. "A Label-Free Marker Based Breast Cancer Detection using Hybrid Deep Learning Models and Raman Spectroscopy". Trends in Sciences 20, n. 4 (22 gennaio 2023): 6299. http://dx.doi.org/10.48048/tis.2023.6299.
Testo completoChung, Jaewon, e Beakcheol Jang. "Accurate prediction of electricity consumption using a hybrid CNN-LSTM model based on multivariable data". PLOS ONE 17, n. 11 (23 novembre 2022): e0278071. http://dx.doi.org/10.1371/journal.pone.0278071.
Testo completoGeng, Boting. "Open Relation Extraction in Patent Claims with a Hybrid Network". Wireless Communications and Mobile Computing 2021 (28 aprile 2021): 1–7. http://dx.doi.org/10.1155/2021/5547281.
Testo completoAl Duhayyim, Mesfer, Hanan Abdullah Mengash, Radwa Marzouk, Mohamed K. Nour, Hany Mahgoub, Fahd Althukair e Abdullah Mohamed. "Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification". Computational Intelligence and Neuroscience 2022 (30 giugno 2022): 1–11. http://dx.doi.org/10.1155/2022/6162445.
Testo completoSong, Fuquan, Heying Ding, Yongzheng Wang, Shiming Zhang e Jinbiao Yu. "A Well Production Prediction Method of Tight Reservoirs Based on a Hybrid Neural Network". Energies 16, n. 6 (21 marzo 2023): 2904. http://dx.doi.org/10.3390/en16062904.
Testo completoAltalak, Maha, Mohammad Ammad uddin, Amal Alajmi e Alwaseemah Rizg. "Smart Agriculture Applications Using Deep Learning Technologies: A Survey". Applied Sciences 12, n. 12 (10 giugno 2022): 5919. http://dx.doi.org/10.3390/app12125919.
Testo completoLee, Chien-Hsing, Phuong Nguyen Thanh, Chao-Tsung Yeh e Ming-Yuan Cho. "Three-Phase Load Prediction-Based Hybrid Convolution Neural Network Combined Bidirectional Long Short-Term Memory in Solar Power Plant". International Transactions on Electrical Energy Systems 2022 (16 settembre 2022): 1–15. http://dx.doi.org/10.1155/2022/2870668.
Testo completoJishan, Md Asifuzzaman, Khan Raqib Mahmud, Abul Kalam Al Azad, Md Shahabub Alam e Anif Minhaz Khan. "Hybrid deep neural network for Bangla automated image descriptor". International Journal of Advances in Intelligent Informatics 6, n. 2 (12 luglio 2020): 109. http://dx.doi.org/10.26555/ijain.v6i2.499.
Testo completoKhortsriwong, Nonthawat, Promphak Boonraksa, Terapong Boonraksa, Thipwan Fangsuwannarak, Asada Boonsrirat, Watcharakorn Pinthurat e Boonruang Marungsri. "Performance of Deep Learning Techniques for Forecasting PV Power Generation: A Case Study on a 1.5 MWp Floating PV Power Plant". Energies 16, n. 5 (22 febbraio 2023): 2119. http://dx.doi.org/10.3390/en16052119.
Testo completo