Letteratura scientifica selezionata sul tema "IMAGE SEGMENTATION TECHNIQUES"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "IMAGE SEGMENTATION TECHNIQUES".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "IMAGE SEGMENTATION TECHNIQUES"
Haralick, Robert M., e Linda G. Shapiro. "Image segmentation techniques". Computer Vision, Graphics, and Image Processing 29, n. 1 (gennaio 1985): 100–132. http://dx.doi.org/10.1016/s0734-189x(85)90153-7.
Testo completoSingh, Inderpal, e Dinesh Kumar. "A Review on Different Image Segmentation Techniques". Indian Journal of Applied Research 4, n. 4 (1 ottobre 2011): 1–3. http://dx.doi.org/10.15373/2249555x/apr2014/200.
Testo completoTongbram, Simon. "Clustering-based Image Segmentation Techniques: A Review". Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (25 luglio 2020): 701–7. http://dx.doi.org/10.5373/jardcs/v12sp7/20202160.
Testo completoSharma, Dr Kamlesh, e Nidhi Garg. "An Extensive Review on Image Segmentation Techniques". Indian Journal of Image Processing and Recognition 1, n. 2 (10 giugno 2021): 1–5. http://dx.doi.org/10.35940/ijipr.b1002.061221.
Testo completoSharma, Dr Kamlesh, e Nidhi Garg. "An Extensive Review on Image Segmentation Techniques". Indian Journal of Image Processing and Recognition 1, n. 2 (10 giugno 2021): 1–5. http://dx.doi.org/10.54105/ijipr.b1002.061221.
Testo completoPatel, Dr Bharat C., e Dr Jagin M. Patel. "Comparative Study on Text Segmentation Techniques". YMER Digital 21, n. 01 (19 gennaio 2022): 372–80. http://dx.doi.org/10.37896/ymer21.01/35.
Testo completoGehlot, Shiv, e John Deva Kumar. "The Image Segmentation Techniques". International Journal of Image, Graphics and Signal Processing 9, n. 2 (8 febbraio 2017): 9–18. http://dx.doi.org/10.5815/ijigsp.2017.02.02.
Testo completoAbdul, Wadood. "Region Based Segmentation Techniques for Digital Images". Journal of Computational and Theoretical Nanoscience 16, n. 9 (1 settembre 2019): 3792–801. http://dx.doi.org/10.1166/jctn.2019.8252.
Testo completoTripathi, Rakesh, e Neelesh Gupta. "A Review on Segmentation Techniques in Large-Scale Remote Sensing Images". SMART MOVES JOURNAL IJOSCIENCE 4, n. 4 (20 aprile 2018): 7. http://dx.doi.org/10.24113/ijoscience.v4i4.143.
Testo completoChandrakala, M. "Image Analysis of Sauvola and Niblack Thresholding Techniques". International Journal for Research in Applied Science and Engineering Technology 9, n. VI (14 giugno 2021): 2353–57. http://dx.doi.org/10.22214/ijraset.2021.34569.
Testo completoTesi sul tema "IMAGE SEGMENTATION TECHNIQUES"
Duramaz, Alper. "Image Segmentation Based On Variational Techniques". Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607721/index.pdf.
Testo completobut for the hierarchical four-phase segmentation, it is observed that this method sometimes gives unsatisfactory results. In this work, a fast hierarchical four-phase segmentation method is proposed where the Chan-Vese active contour method is applied following the gradient flows method. After the segmentation process, the segmented regions are denoised using diffusion filters. Additionally, for the low signal-to-noise ratio applications, the prefiltering scheme using nonlinear diffusion filters is included in the proposed method. Simulations have shown that the proposed method provides an effective solution to the image segmentation and denoising problem.
Altinoklu, Metin Burak. "Image Segmentation Based On Variational Techniques". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610415/index.pdf.
Testo completo#8211
Shah variational approach have been studied. By obtaining an optimum point of the Mumford-Shah functional which is a piecewise smooth approximate image and a set of edge curves, an image can be decomposed into regions. This piecewise smooth approximate image is smooth inside of regions, but it is allowed to be discontinuous region wise. Unfortunately, because of the irregularity of the Mumford Shah functional, it cannot be directly used for image segmentation. On the other hand, there are several approaches to approximate the Mumford-Shah functional. In the first approach, suggested by Ambrosio-Tortorelli, it is regularized in a special way. The regularized functional (Ambrosio-Tortorelli functional) is supposed to be gamma-convergent to the Mumford-Shah functional. In the second approach, the Mumford-Shah functional is minimized in two steps. In the first minimization step, the edge set is held constant and the resultant functional is minimized. The second minimization step is about updating the edge set by using level set methods. The second approximation to the Mumford-Shah functional is known as the Chan-Vese method. In both approaches, resultant PDE equations (Euler-Lagrange equations of associated functionals) are solved by finite difference methods. In this study, both approaches are implemented in a MATLAB environment. The overall performance of the algorithms has been investigated based on computer simulations over a series of images from simple to complicated.
Storve, Sigurd. "Kalman Smoothing Techniques in Medical Image Segmentation". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18823.
Testo completoSeemann, Torsten 1973. "Digital image processing using local segmentation". Monash University, School of Computer Science and Software Engineering, 2002. http://arrow.monash.edu.au/hdl/1959.1/8055.
Testo completoMatalas, Ioannis. "Segmentation techniques suitable for medical images". Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339149.
Testo completoYeo, Si Yong. "Implicit deformable models for biomedical image segmentation". Thesis, Swansea University, 2011. https://cronfa.swan.ac.uk/Record/cronfa42416.
Testo completoAlazawi, Eman. "Holoscopic 3D image depth estimation and segmentation techniques". Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/10517.
Testo completoShaffrey, Cian William. "Multiscale techniques for image segmentation, classification and retrieval". Thesis, University of Cambridge, 2003. https://www.repository.cam.ac.uk/handle/1810/272033.
Testo completoSekkal, Rafiq. "Techniques visuelles pour la détection et le suivi d’objets 2D". Thesis, Rennes, INSA, 2014. http://www.theses.fr/2014ISAR0032/document.
Testo completoNowadays, image processing remains a very important step in different fields of applications. In an indoor environment, for a navigation system related to a mobile robot (electrical wheelchair), visual information detection and tracking is crucial to perform robotic tasks (localization, planning…). In particular, when considering passing door task, it is essential to be able to detect and track automatically all the doors that belong to the environment. Door detection is not an obvious task: the variations related to the door status (open or closed), their appearance (e.g. same color as the walls) and their relative position to the camera have influence on the results. On the other hand, tasks such as the detection of navigable areas or obstacle avoidance may involve a dedicated semantic representation to interpret the content of the scene. Segmentation techniques are then used to extract pseudosemantic regions based on several criteria (color, gradient, texture...). When adding the temporal dimension, the regions are tracked then using spatiotemporal segmentation algorithms. In this thesis, we first present joint door detection and tracking technique in a corridor environment: based on dedicated geometrical features, the proposed solution offers interesting results. Then, we present an original joint hierarchical and multiresolution segmentation framework able to extract a pseudo-semantic region representation. Finally, this technique is extended to video sequences to allow the tracking of regions along image sequences. Based on contour motion extraction, this solution has shown relevant results that can be successfully applied to corridor videos
Celik, Mehmet Kemal. "Digital image segmentation using periodic codings". Thesis, Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/80099.
Testo completoMaster of Science
Libri sul tema "IMAGE SEGMENTATION TECHNIQUES"
Siddiqui, Fasahat Ullah, e Abid Yahya. Clustering Techniques for Image Segmentation. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81230-0.
Testo completoRoland, Wilson. Image segmentation and uncertainty. Letchworth, Herts., England: Research Studies Press, 1988.
Cerca il testo completoIsmail, Ben Ayed, a cura di. Variational and level set methods in image segmentation. Berlin: Springer Verlag, 2010.
Cerca il testo completoLeppäjärvi, Seppo. Image segmentation and analysis for automatic color correction. Lappeenranta, Finland: Lappeenranta University of Technology, 1999.
Cerca il testo completoGorte, Ben. Probabilistic segmentation of remotely sensed images. Enschede: International Institute for Aerospace Survey and Earth Sciences (ITC), 1998.
Cerca il testo completoVernon, David. Fourier vision: Segmentation and velocity measurement using the Fourier transform. Boston: Kluwer Academic, 2001.
Cerca il testo completoNitzberg, M. Filtering, segmentation, and depth. Berlin: Springer-Verlag, 1993.
Cerca il testo completoBatra, Dhruv. Interactive Co-segmentation of Objects in Image Collections. New York, NY: Springer Science+Business Media, LLC, 2011.
Cerca il testo completo1956-, Solimini Sergio, a cura di. Variational methods in image segmentation: With seven image processing experiments. Boston: Birkhäuser, 1995.
Cerca il testo completoCapitoli di libri sul tema "IMAGE SEGMENTATION TECHNIQUES"
Bhanu, Bir, e Sungkee Lee. "Image segmentation Techniques". In Genetic Learning for Adaptive Image Segmentation, 15–24. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2774-9_2.
Testo completoZhang, Yu-Jin. "Image Segmentation". In A Selection of Image Analysis Techniques, 31–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/b23131-2.
Testo completoChaki, Jyotismita, e Nilanjan Dey. "Segmentation Techniques". In A Beginner's Guide to Image Preprocessing Techniques, 57–72. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academicdivision of T&F Informa, plc, 2019. | Series: Intelligent signalprocessing and data analysis: CRC Press, 2018. http://dx.doi.org/10.1201/9780429441134-5.
Testo completoSiddiqui, Fasahat Ullah, e Abid Yahya. "Partitioning Clustering Techniques". In Clustering Techniques for Image Segmentation, 35–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_2.
Testo completoHe, Jia, Chang-Su Kim e C. C. Jay Kuo. "Interactive Image Segmentation Techniques". In SpringerBriefs in Electrical and Computer Engineering, 17–62. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-60-4_3.
Testo completoSiddiqui, Fasahat Ullah, e Abid Yahya. "Novel Partitioning Clustering". In Clustering Techniques for Image Segmentation, 69–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_3.
Testo completoSiddiqui, Fasahat Ullah, e Abid Yahya. "Quantitative Analysis Methods of Clustering Techniques". In Clustering Techniques for Image Segmentation, 93–105. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_4.
Testo completoSiddiqui, Fasahat Ullah, e Abid Yahya. "Introduction to Image Segmentation and Clustering". In Clustering Techniques for Image Segmentation, 1–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81230-0_1.
Testo completoPhonsa, Gurbakash, e K. Manu. "A Survey: Image Segmentation Techniques". In Harmony Search and Nature Inspired Optimization Algorithms, 1123–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0761-4_105.
Testo completoMozdren, Karel, Tomas Burianek, Jan Platos e Václav Snášel. "Evolutionary Techniques for Image Segmentation". In Advances in Intelligent Systems and Computing, 291–300. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08156-4_29.
Testo completoAtti di convegni sul tema "IMAGE SEGMENTATION TECHNIQUES"
Haralick, Robert M., e Linda G. Shapiro. "Image Segmentation Techniques". In 1985 Technical Symposium East, a cura di John F. Gilmore. SPIE, 1985. http://dx.doi.org/10.1117/12.948400.
Testo completoTaouli, Sidi Ahmed. "Research on the Image Segmentation by Watershed Transforms". In 3rd International Conference on Machine Learning Techniques and Data Science (MLDS 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.122108.
Testo completoSong, Yuheng, e Hao Yan. "Image Segmentation Techniques Overview". In 2017 Asia Modelling Symposium (AMS). 11th International Conference on Mathematical Modelling & Computer Simulation. IEEE, 2017. http://dx.doi.org/10.1109/ams.2017.24.
Testo completoCornelis, De Becker, Bister, Vanhove, Demonceau e Cornelis. "Techniques for Cardiac Image Segmentation". In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.590248.
Testo completoComelis, J., J. De Becker, M. Bister, C. Vanhove, G. Demonceau e A. Cornelis. "Techniques for cardiac image segmentation". In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5762094.
Testo completoXu, Haixiang, Guangxi Zhu, Jinwen Tian, Xiang Zhang e Fuyuan Peng. "Image segmentation using support vector machine". In MIPPR 2005 Image Analysis Techniques, a cura di Deren Li e Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.655253.
Testo completoZhang, Hong-wei, e Zheng-guang Liu. "Wavelet-based snake model for image segmentation". In MIPPR 2005 Image Analysis Techniques, a cura di Deren Li e Hongchao Ma. SPIE, 2005. http://dx.doi.org/10.1117/12.655275.
Testo completoGao, Li, Jie Xia, Junli Liang e Shuyuan Yang. "Improved Techniques for Unsupervised Image Segmentation". In 2006 International Conference on Communications, Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/icccas.2006.284608.
Testo completoPandey, Rahul, e R. Lalchhanhima. "Segmentation Techniques for Complex Image: Review". In 2020 International Conference on Computational Performance Evaluation (ComPE). IEEE, 2020. http://dx.doi.org/10.1109/compe49325.2020.9200027.
Testo completoSevak, Jay S., Aerika D. Kapadia, Jaiminkumar B. Chavda, Arpita Shah e Mrugendrasinh Rahevar. "Survey on semantic image segmentation techniques". In 2017 International Conference on Intelligent Sustainable Systems (ICISS). IEEE, 2017. http://dx.doi.org/10.1109/iss1.2017.8389420.
Testo completoRapporti di organizzazioni sul tema "IMAGE SEGMENTATION TECHNIQUES"
Huang, Haohang, Erol Tutumluer, Jiayi Luo, Kelin Ding, Issam Qamhia e John Hart. 3D Image Analysis Using Deep Learning for Size and Shape Characterization of Stockpile Riprap Aggregates—Phase 2. Illinois Center for Transportation, settembre 2022. http://dx.doi.org/10.36501/0197-9191/22-017.
Testo completoHuang, Haohang, Jiayi Luo, Kelin Ding, Erol Tutumluer, John Hart e Issam Qamhia. I-RIPRAP 3D Image Analysis Software: User Manual. Illinois Center for Transportation, giugno 2023. http://dx.doi.org/10.36501/0197-9191/23-008.
Testo completoPatwa, B., P. L. St-Charles, G. Bellefleur e B. Rousseau. Predictive models for first arrivals on seismic reflection data, Manitoba, New Brunswick, and Ontario. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329758.
Testo completoAsari, Vijayan, Paheding Sidike, Binu Nair, Saibabu Arigela, Varun Santhaseelan e Chen Cui. PR-433-133700-R01 Pipeline Right-of-Way Automated Threat Detection by Advanced Image Analysis. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), dicembre 2015. http://dx.doi.org/10.55274/r0010891.
Testo completo