Letteratura scientifica selezionata sul tema "Jarrow-Turnbull model"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Jarrow-Turnbull model".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Jarrow-Turnbull model"
Zhang, Qiang, e Min Wu. "Credit Risk Mitigation Based on Jarrow-Turnbull Model". Systems Engineering Procedia 2 (2011): 49–59. http://dx.doi.org/10.1016/j.sepro.2011.10.007.
Testo completoFrühwirth, Manfred, e Leopold Sögner. "The Jarrow/Turnbull default risk model—Evidence from the German market". European Journal of Finance 12, n. 2 (febbraio 2006): 107–35. http://dx.doi.org/10.1080/13518470500145969.
Testo completoFriesenegger, Alexander, Andreas W. Rathgeber e Stefan Stöckl. "Recovery Rate in the Event of an Issuer’s Insolvency — Empirical Study on Implications for the Pricing of Credit Default Risks in German Corporate Bonds". Review of Pacific Basin Financial Markets and Policies 18, n. 04 (dicembre 2015): 1550023. http://dx.doi.org/10.1142/s021909151550023x.
Testo completoLiu, Jian, Jihong Xiao, Lizhao Yan e Fenghua Wen. "Valuing Catastrophe Bonds Involving Credit Risks". Mathematical Problems in Engineering 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/563086.
Testo completoHOOGLAND, J. K., C. D. D. NEUMANN e M. H. VELLEKOOP. "SYMMETRIES IN JUMP-DIFFUSION MODELS WITH APPLICATIONS IN OPTION PRICING AND CREDIT RISK". International Journal of Theoretical and Applied Finance 06, n. 02 (marzo 2003): 135–72. http://dx.doi.org/10.1142/s0219024903001803.
Testo completoPinto Suárez, Carlos Javier. "Valoración de credit default swap aplicación del modelo de Jarrow y Turnbull en un bono de deuda privada en Colombia". Revista Lebret, n. 9 (22 giugno 2018): 151. http://dx.doi.org/10.15332/rl.v0i9.1954.
Testo completoFruhwirth, Manfred, e Leopold Sögner. "The Jarrow/Turnbull Default Risk Model - Evidence from the German Market". SSRN Electronic Journal, 2002. http://dx.doi.org/10.2139/ssrn.301364.
Testo completoFruhwirth, Manfred, e Leopold Sögner. "The Jarrow/Turnbull Default Risk Model: Evidence from the German Market". SSRN Electronic Journal, 2001. http://dx.doi.org/10.2139/ssrn.265456.
Testo completoDubrana, Ludovic. "A Stochastic Model for Credit Spreads Under a Risk-Neutral Framework Through the Use of an Extended Version of the Jarrow, Lando and Turnbull Model". SSRN Electronic Journal, 2011. http://dx.doi.org/10.2139/ssrn.1964459.
Testo completoTesi sul tema "Jarrow-Turnbull model"
Oguz, Hatice Dilek. "Pricing Us Corporate Bonds By Jarrow/turnbull (1995) Model". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12611174/index.pdf.
Testo completoSharma, Nikunj. "Review of quantitative models of credit risk for debt instruments, including catastrophe bonds". Master's thesis, Instituto Superior de Economia e Gestão, 2020. http://hdl.handle.net/10400.5/20172.
Testo completoOs preços de contratos financeiros variam devido a dois principais fatores, nomeadamente o risco de mercado e o risco de crédito. O risco de mercado é o risco do valor de um contrato financeiro diminuir devido a alterações nos fatores do mercado, fatores estes que podem ser reduzidos pela diversificação em classes de ativos alternativas. O risco de crédito é o risco de uma pessoa ou uma organização deixar de efetuar um pagamento que havia prometido. É de consenso geral que uma análise efetiva do risco de crédito é essencial para investidores que procuram determinar se uma empresa tem capacidade financeira para cumprir as suas obrigações financeiras. Este estudo tem como principal foco o risco de crédito. Este estudo fornece uma revisão detalhada de pesquisas anteriores na área de modelagem de risco de crédito para instrumentos de dívida inadimplentes. O estudo menciona pontos fortes, deficiências e os recentes avanços no campo da modelagem de risco de crédito. Para além disso, é também feita uma revisão dos modelos cumumente usado: O modelo de Merton (1974), o modelo da primeira passagem (1976), o modelo de dois estados e o modelo de Jarrow-Lando-Turnbull (1997). Na segunda parte, é introduzido o conceito de catástrofe, explicando a suas definições e estrutura das partes interessadas. O evento de pagamento de um título de catástrofe após um evento de catástrofe é tratado pelos investidores como uma inadimplência de crédito. Assim, é portanto introduzido o uso do modelo quantitativo simples de risco de crédito para catástrofe de títulos.
Prices of financial contracts vary due to two major factors namely market risk and credit risk. Market risk is the risk that the value of a financial contract will decrease due to changes in market factors, these factors can be reduced by diversification into alternative assets classes. Credit risk is the risk that a person or an organisation will fail to make a payment that they have promised. It is a consensus that effective credit risk analysis is essential for investors seeking to determine whether a firm has the financial ability to meet its financial obligations. This study is primarily focused on the credit risk component. This study provides a detailed overview of past research in the area of credit risk modelling for defaultable debt instruments. The study mentions strengths, shortcomings and the recent advancement in the field of credit risk modelling. It also provides a review of commonly used model namely: the Merton model (1974), the first-passage-time model (1976), the two-state model and Jarrow-Lando-Turnbull model (1997). In the second part, we introduce catastrophe bonds by explaining their definitions and structure. The event of a pay-out from a catastrophe bond after a catastrophe event is treated by investors like a credit default. We will therefore extend the use of quantitative credit risk model to catastrophe bonds.
info:eu-repo/semantics/publishedVersion
Gokgoz, Ismail Hakki. "Stochastic Credit Default Swap Pricing". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614921/index.pdf.
Testo completoMerton and Black-Cox constant barrier. Finally, we conclude our work with some inferences and proposals.
Hsieh, Tsung-chih, e 謝宗智. "Jarrow-Lando-Turnbull Model with Discrete Random Recovery Rate". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/50485884668058854482.
Testo completo東吳大學
財務工程與精算數學系
97
JLT (Jarrow-Lando-Turnbull) model provides us an important and practical method to value some financial instrument such like the defaultable zero-coupon bonds or other credit derivatives such as credit spread options. But under the JLT model circumstance, the default state has only one default class with a constant recovery rate. This model does not consider the possibility of random recovery rate which occurs often in practice. Millossovich (2003) has dealt with the problem and extended to multiple default classes under the JLT model framework. In this paper, we further extend the Millossovich model. Our main purpose is to revise the Markov Transition Matrix and let the corporate that stays in different rate in early stage falls into the same default class in the next stage to have different recovery rates. We also did the credit spread sensitivity analysis to illustrate the graph analysis which Millossovich (2003) lacks.
Lin, Shu-fang, e 林淑芳. "Project Debt Pricing--the Extension of Jarrow-Turnbull Discrete Model". Thesis, 2000. http://ndltd.ncl.edu.tw/handle/53204996088941087191.
Testo completo國立臺灣大學
財務金融學研究所
88
Project Finance is one way to get financing by using the cash flows that the project will generate in the future as the resource of payback. The lending amount is usually enormous and it''s very complicated since it involves many different institutions and companies. Project debts include many instruments, such as commercial bank loans and project bonds. Since there are various kinds of risks in a project, project debts have some unique properties, which make pricing them very difficult. This thesis discusses how to price project debts by using the Jarrow-Turnbull discrete model. The Jarrow-Turnbull discrete model is a credit risk pricing model, and it applies the no-arbitrage pricing method. This thesis releases the assumption that the recovery rate is fixed in the Jarrow-Turnbull discrete model, and points out a proper pricing method in terms of the special properties of project debts. Since there are few papers that discussed about this topic, it is hoped that this thesis can give the readers some hints to research further.
Capitoli di libri sul tema "Jarrow-Turnbull model"
Grundke, Peter. "Bewertung von Kreditderivaten im zeitdiskreten Modell von Jarrow, Lando und Turnbull". In Modellierung und Bewertung von Kreditrisiken, 127–77. Wiesbaden: Deutscher Universitätsverlag, 2003. http://dx.doi.org/10.1007/978-3-322-97847-9_4.
Testo completo