Letteratura scientifica selezionata sul tema "Lie groups"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Lie groups".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Lie groups"

1

Hiraga, Kaoru. "Lie groups." Duke Mathematical Journal 85, no. 1 (October 1996): 167–81. http://dx.doi.org/10.1215/s0012-7094-96-08507-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Alekseevskii, D. V. "Lie groups." Journal of Soviet Mathematics 28, no. 6 (March 1985): 924–49. http://dx.doi.org/10.1007/bf02105458.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Ni, Xiang, and Chengming Bai. "Special symplectic Lie groups and hypersymplectic Lie groups." manuscripta mathematica 133, no. 3-4 (June 30, 2010): 373–408. http://dx.doi.org/10.1007/s00229-010-0375-z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

HOFMANN, K. H., and K. H. NEEB. "Pro-Lie groups which are infinite-dimensional Lie groups." Mathematical Proceedings of the Cambridge Philosophical Society 146, no. 2 (March 2009): 351–78. http://dx.doi.org/10.1017/s030500410800128x.

Testo completo
Abstract (sommario):
AbstractA pro-Lie group is a projective limit of a family of finite-dimensional Lie groups. In this paper we show that a pro-Lie group G is a Lie group in the sense that its topology is compatible with a smooth manifold structure for which the group operations are smooth if and only if G is locally contractible. We also characterize the corresponding pro-Lie algebras in various ways. Furthermore, we characterize those pro-Lie groups which are locally exponential, that is, they are Lie groups with a smooth exponential function which maps a zero neighbourhood in the Lie algebra diffeomorphically onto an open identity neighbourhood of the group.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Wüstner, Michael. "Splittable Lie Groups and Lie Algebras." Journal of Algebra 226, no. 1 (April 2000): 202–15. http://dx.doi.org/10.1006/jabr.1999.8162.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Fioresi, Rita, and Robert Yuncken. "Quantized semisimple Lie groups." Archivum Mathematicum, no. 5 (2024): 311–49. https://doi.org/10.5817/am2024-5-311.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Hofmann, Karl H., Sidney A. Morris, and Markus Stroppel. "Locally compact groups, residual Lie groups, and varieties generated by Lie groups." Topology and its Applications 71, no. 1 (June 1996): 63–91. http://dx.doi.org/10.1016/0166-8641(95)00068-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Howard, Eric. "Theory of groups and symmetries: Finite groups, Lie groups and Lie algebras." Contemporary Physics 60, no. 3 (July 3, 2019): 275. http://dx.doi.org/10.1080/00107514.2019.1663933.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Oğuz, Gülay, Ilhan Içen, and Gürsoy Habil. "Lie rough groups." Filomat 32, no. 16 (2018): 5735–41. http://dx.doi.org/10.2298/fil1816735o.

Testo completo
Abstract (sommario):
This paper introduces the definition of a Lie rough group as a natural development of the concepts of a smooth manifold and a rough group on an approximation space. Furthermore, the properties of Lie rough groups are discussed. It is shown that every Lie rough group is a topological rough group, and that the product of two Lie rough groups is again a Lie rough group. We define the concepts of Lie rough subgroups and Lie rough normal subgroups. Finally, our aim is to give an example by using definition of Lie rough homomorphism sets G and H.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Pressley, Andrew N. "LIE GROUPS AND ALGEBRAIC GROUPS." Bulletin of the London Mathematical Society 23, no. 6 (November 1991): 612–14. http://dx.doi.org/10.1112/blms/23.6.612b.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Tesi sul tema "Lie groups"

1

Eddy, Scott M. "Lie Groups and Lie Algebras." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1320152161.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Ahluwalia, Kanwardeep Singh. "Lie bialgebras and Poisson lie groups." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388758.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

pl, tomasz@uci agh edu. "A Lie Group Structure on Strict Groups." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1076.ps.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Harkins, Andrew. "Combining lattices of soluble lie groups." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341777.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Öhrnell, Carl. "Lie Groups and PDE." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420706.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Burroughs, Nigel John. "The quantisation of Lie groups and Lie algebras." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358486.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Krook, Jonathan. "Overview of Lie Groups and Their Lie Algebras." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275722.

Testo completo
Abstract (sommario):
Intuitively, Lie groups are groups that are also smooth. The aim of this thesis is to describe how Lie groups are defined as smooth manifolds, and to look into their properties. To each Lie group there exists an associated vector space, which is called the Lie algebra of the Lie group. We will investigate what properties of a Lie group can be derived from its Lie algebra. As an application, we will characterise all unitary irreducible finite dimensional representations of the Lie group SO(3).<br>Liegrupper kan ses som grupper som även är glatta. Målet med den här rapporten är att definiera Liegrupper som glatta mångfalder, och att undersöka några av liegruppernas egenskaper. Till varje Liegrupp kan man relatera ett vektorrum, som kallas Liegruppens Liealgebra. Vi kommer undersöka vilka egenskaper hos en Liegrupp som kan härledas från dess Liealgebra. Som tillämpning kommer vi karaktärisera alla unitära irreducibla ändligtdimensionella representationer av Liegruppen SO(3).
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Ray, Jishnu. "Iwasawa algebras for p-adic Lie groups and Galois groups." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS189/document.

Testo completo
Abstract (sommario):
Un outil clé dans la théorie des représentations p-adiques est l'algèbre d'Iwasawa, construit par Iwasawa pour étudier les nombres de classes d'une tour de corps de nombres. Pour un nombre premier p, l'algèbre d'Iwasawa d'un groupe de Lie p-adique G, est l'algèbre de groupe G complétée non-commutative. C'est aussi l'algèbre des mesures p-adiques sur G. Les objets provenant de groupes semi-simples, simplement connectés ont des présentations explicites comme la présentation par Serre des algèbres semi-simples et la présentation de groupe de Chevalley par Steinberg. Dans la partie I, nous donnons une description explicite des certaines algèbres d'Iwasawa. Nous trouvons une présentation explicite (par générateurs et relations) de l'algèbre d'Iwasawa pour le sous-groupe de congruence principal de tout groupe de Chevalley semi-simple, scindé et simplement connexe sur Z_p. Nous étendons également la méthode pour l'algèbre d'Iwasawa du sous-groupe pro-p Iwahori de GL (n, Z_p). Motivé par le changement de base entre les algèbres d'Iwasawa sur une extension de Q_p nous étudions les représentations p-adiques globalement analytiques au sens d'Emerton. Nous fournissons également des résultats concernant la représentation de série principale globalement analytique sous l'action du sous-groupe pro-p Iwahori de GL (n, Z_p) et déterminons la condition d'irréductibilité. Dans la partie II, nous faisons des expériences numériques en utilisant SAGE pour confirmer heuristiquement la conjecture de Greenberg sur la p-rationalité affirmant l'existence de corps de nombres "p-rationnels" ayant des groupes de Galois (Z/2Z)^t. Les corps p-rationnels sont des corps de nombres algébriques dont la cohomologie galoisienne est particulièrement simple. Ils sont utilisés pour construire des représentations galoisiennes ayant des images ouvertes. En généralisant le travail de Greenberg, nous construisons de nouvelles représentations galoisiennes du groupe de Galois absolu de Q ayant des images ouvertes dans des groupes réductifs sur Z_p (ex GL (n, Z_p), SL (n, Z_p ), SO (n, Z_p), Sp (2n, Z_p)). Nous prouvons des résultats qui montrent l'existence d'extensions de Lie p-adiques de Q où le groupe de Galois correspond à une certaine algèbre de Lie p-adique (par exemple sl(n), so(n), sp(2n)). Cela répond au problème classique de Galois inverse pour l'algèbre de Lie simple p-adique<br>A key tool in p-adic representation theory is the Iwasawa algebra, originally constructed by Iwasawa in 1960's to study the class groups of number fields. Since then, it appeared in varied settings such as Lazard's work on p-adic Lie groups and Fontaine's work on local Galois representations. For a prime p, the Iwasawa algebra of a p-adic Lie group G, is a non-commutative completed group algebra of G which is also the algebra of p-adic measures on G. It is a general principle that objects coming from semi-simple, simply connected (split) groups have explicit presentations like Serre's presentation of semi-simple algebras and Steinberg's presentation of Chevalley groups as noticed by Clozel. In Part I, we lay the foundation by giving an explicit description of certain Iwasawa algebras. We first find an explicit presentation (by generators and relations) of the Iwasawa algebra for the principal congruence subgroup of any semi-simple, simply connected Chevalley group over Z_p. Furthermore, we extend the method to give a set of generators and relations for the Iwasawa algebra of the pro-p Iwahori subgroup of GL(n,Z_p). The base change map between the Iwasawa algebras over an extension of Q_p motivates us to study the globally analytic p-adic representations following Emerton's work. We also provide results concerning the globally analytic induced principal series representation under the action of the pro-p Iwahori subgroup of GL(n,Z_p) and determine its condition of irreducibility. In Part II, we do numerical experiments using a computer algebra system SAGE which give heuristic support to Greenberg's p-rationality conjecture affirming the existence of "p-rational" number fields with Galois groups (Z/2Z)^t. The p-rational fields are algebraic number fields whose Galois cohomology is particularly simple and they offer ways of constructing Galois representations with big open images. We go beyond Greenberg's work and construct new Galois representations of the absolute Galois group of Q with big open images in reductive groups over Z_p (ex. GL(n, Z_p), SL(n, Z_p), SO(n, Z_p), Sp(2n, Z_p)). We are proving results which show the existence of p-adic Lie extensions of Q where the Galois group corresponds to a certain specific p-adic Lie algebra (ex. sl(n), so(n), sp(2n)). This relates our work with a more general and classical inverse Galois problem for p-adic Lie extensions
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Jimenez, William. "Riemannian submersions and Lie groups." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2648.

Testo completo
Abstract (sommario):
Thesis (Ph. D.) -- University of Maryland, College Park, 2005.<br>Thesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Hindeleh, Firas Y. "Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie Groups." University of Toledo / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1153933389.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Libri sul tema "Lie groups"

1

Duistermaat, J. J. Lie groups. Berlin: Springer, 2000.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Duistermaat, J. J., and J. A. C. Kolk. Lie Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56936-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bump, Daniel. Lie Groups. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Bump, Daniel. Lie Groups. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

San Martin, Luiz A. B. Lie Groups. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61824-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Bourbaki, Nicolas. Lie Groups and Lie Algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-89394-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Komrakov, B. P., I. S. Krasil’shchik, G. L. Litvinov, and A. B. Sossinsky, eds. Lie Groups and Lie Algebras. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5258-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Serre, Jean-Pierre. Lie Algebras and Lie Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-70634-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Bourbaki, Nicolas. Lie groups and Lie algebras. Berlin: Springer, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Nicolas Bourbaki. Lie groups and Lie algebras. Berlin: Springer-Verlag, 1989.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Capitoli di libri sul tema "Lie groups"

1

Duistermaat, J. J., and J. A. C. Kolk. "Lie Groups and Lie Algebras." In Lie Groups, 1–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56936-4_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

San Martin, Luiz A. B. "Lie Groups and Lie Algebras." In Lie Groups, 87–116. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61824-7_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Jeevanjee, Nadir. "Groups, Lie Groups, and Lie Algebras." In An Introduction to Tensors and Group Theory for Physicists, 109–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14794-9_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Jeevanjee, Nadir. "Groups, Lie Groups, and Lie Algebras." In An Introduction to Tensors and Group Theory for Physicists, 87–143. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-4715-5_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Onishchik, Arkadij L., and Ernest B. Vinberg. "Lie Groups." In Lie Groups and Algebraic Groups, 1–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74334-4_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Baker, Andrew. "Lie Groups." In Springer Undergraduate Mathematics Series, 181–209. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0183-3_7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Sontz, Stephen Bruce. "Lie Groups." In Universitext, 93–103. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14765-9_7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Schneider, Peter. "Lie Groups." In Grundlehren der mathematischen Wissenschaften, 89–153. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21147-8_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Selig, J. M. "Lie Groups." In Monographs in Computer Science, 9–24. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2484-4_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Rudolph, Gerd, and Matthias Schmidt. "Lie Groups." In Theoretical and Mathematical Physics, 219–67. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5345-7_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Lie groups"

1

Harapanahalli, Akash, and Samuel Coogan. "Efficient Reachable Sets on Lie Groups Using Lie Algebra Monotonicity and Tangent Intervals." In 2024 IEEE 63rd Conference on Decision and Control (CDC), 695–702. IEEE, 2024. https://doi.org/10.1109/cdc56724.2024.10886065.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Solo, Victor. "Stratonovich, Ito and Numerical Analysis on Lie Groups." In 2024 IEEE 63rd Conference on Decision and Control (CDC), 4328–33. IEEE, 2024. https://doi.org/10.1109/cdc56724.2024.10886027.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bouch, Sara El, Samy Labsir, Alexandre Renaux, Jordi Vilà-Valls, and Eric Chaumette. "An Intrinsic Modified Cramér-Rao Bound on Lie Groups." In 2024 27th International Conference on Information Fusion (FUSION), 1–8. IEEE, 2024. http://dx.doi.org/10.23919/fusion59988.2024.10706414.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Lopez, Enzo, Karim Dahia, Nicolas Merlinge, Benedicte Winter-Bonnet, Alain Maschiella, and Christian Musso. "Sequential Markov Chain Monte Carlo methods on Matrix Lie Groups." In 2024 27th International Conference on Information Fusion (FUSION), 1–7. IEEE, 2024. http://dx.doi.org/10.23919/fusion59988.2024.10706305.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Bouch, Sara El, Samy Labsir, Alexandre Renaux, Jordi Vilà-Valis, and Eric Chaumette. "Full Slepian-Bangs Formula for Fisher Information on Lie Groups." In 2024 58th Asilomar Conference on Signals, Systems, and Computers, 1306–10. IEEE, 2024. https://doi.org/10.1109/ieeeconf60004.2024.10943026.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Sarlette, Alain, Silvere Bonnabel, and Rodolphe Sepulchre. "Coordination on Lie groups." In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739201.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Galaviz, Imelda. "Introductory Lectures on Lie Groups and Lie Algebras." In ADVANCED SUMMER SCHOOL IN PHYSICS 2005: Frontiers in Contemporary Physics EAV05. AIP, 2006. http://dx.doi.org/10.1063/1.2160969.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Kawazoe, T., T. Oshima, and S. Sano. "Representation Theory of Lie Groups and Lie Algebras." In Fuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537162.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Chauchat, Paul, Axel Barrau, and Silvere Bonnabel. "Invariant smoothing on Lie Groups." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8594068.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Aguilar, M. A. "Lie groups and differential geometry." In The XXX Latin American school of physics ELAF: Group theory and its applications. AIP, 1996. http://dx.doi.org/10.1063/1.50217.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Lie groups"

1

Arvanitoyeorgos, Andreas. Lie Transformation Groups and Geometry. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-11-35.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Axford, R. A. Construction of Difference Equations Using Lie Groups. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/1172.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Gilmore, Robert. Relations Among Low-dimensional Simple Lie Groups. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-28-2012-1-45.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Clubok, Kenneth Sherman. Conformal field theory on affine Lie groups. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/260974.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Krishnaprasad, P. S., and Dimitris P. Tsakiris. G-Snakes: Nonholonomic Kinematic Chains on Lie Groups. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada453004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Cohen, Frederick R., Mentor Stafa, and V. Reiner. On Spaces of Commuting Elements in Lie Groups. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada606720.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

McHardy, James David, Elias Davis Clark, Joseph H. Schmidt, and Scott D. Ramsey. Lie groups of variable cross-section channel flow. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1523203.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Schmid, Rudolf. Infinite Dimentional Lie Groups With Applications to Mathematical Physics. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-1-2004-54-120.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Ikawa, Osamu. Motion of Charged Particles in Two-Step Nilpotent Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-12-2011-252-262.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Bernatska, Julia. Geometry and Topology of Coadjoint Orbits of Semisimple Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-146-166.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!