Segui questo link per vedere altri tipi di pubblicazioni sul tema: Lie groups.

Articoli di riviste sul tema "Lie groups"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Lie groups".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Hiraga, Kaoru. "Lie groups." Duke Mathematical Journal 85, no. 1 (1996): 167–81. http://dx.doi.org/10.1215/s0012-7094-96-08507-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Alekseevskii, D. V. "Lie groups." Journal of Soviet Mathematics 28, no. 6 (1985): 924–49. http://dx.doi.org/10.1007/bf02105458.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Ni, Xiang, and Chengming Bai. "Special symplectic Lie groups and hypersymplectic Lie groups." manuscripta mathematica 133, no. 3-4 (2010): 373–408. http://dx.doi.org/10.1007/s00229-010-0375-z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

HOFMANN, K. H., and K. H. NEEB. "Pro-Lie groups which are infinite-dimensional Lie groups." Mathematical Proceedings of the Cambridge Philosophical Society 146, no. 2 (2009): 351–78. http://dx.doi.org/10.1017/s030500410800128x.

Testo completo
Abstract (sommario):
AbstractA pro-Lie group is a projective limit of a family of finite-dimensional Lie groups. In this paper we show that a pro-Lie group G is a Lie group in the sense that its topology is compatible with a smooth manifold structure for which the group operations are smooth if and only if G is locally contractible. We also characterize the corresponding pro-Lie algebras in various ways. Furthermore, we characterize those pro-Lie groups which are locally exponential, that is, they are Lie groups with a smooth exponential function which maps a zero neighbourhood in the Lie algebra diffeomorphically
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Wüstner, Michael. "Splittable Lie Groups and Lie Algebras." Journal of Algebra 226, no. 1 (2000): 202–15. http://dx.doi.org/10.1006/jabr.1999.8162.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Fioresi, Rita, and Robert Yuncken. "Quantized semisimple Lie groups." Archivum Mathematicum, no. 5 (2024): 311–49. https://doi.org/10.5817/am2024-5-311.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Hofmann, Karl H., Sidney A. Morris, and Markus Stroppel. "Locally compact groups, residual Lie groups, and varieties generated by Lie groups." Topology and its Applications 71, no. 1 (1996): 63–91. http://dx.doi.org/10.1016/0166-8641(95)00068-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Howard, Eric. "Theory of groups and symmetries: Finite groups, Lie groups and Lie algebras." Contemporary Physics 60, no. 3 (2019): 275. http://dx.doi.org/10.1080/00107514.2019.1663933.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Oğuz, Gülay, Ilhan Içen, and Gürsoy Habil. "Lie rough groups." Filomat 32, no. 16 (2018): 5735–41. http://dx.doi.org/10.2298/fil1816735o.

Testo completo
Abstract (sommario):
This paper introduces the definition of a Lie rough group as a natural development of the concepts of a smooth manifold and a rough group on an approximation space. Furthermore, the properties of Lie rough groups are discussed. It is shown that every Lie rough group is a topological rough group, and that the product of two Lie rough groups is again a Lie rough group. We define the concepts of Lie rough subgroups and Lie rough normal subgroups. Finally, our aim is to give an example by using definition of Lie rough homomorphism sets G and H.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Pressley, Andrew N. "LIE GROUPS AND ALGEBRAIC GROUPS." Bulletin of the London Mathematical Society 23, no. 6 (1991): 612–14. http://dx.doi.org/10.1112/blms/23.6.612b.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Wojtyński, Wojciech. "Lie groups as quotient groups." Reports on Mathematical Physics 40, no. 2 (1997): 373–79. http://dx.doi.org/10.1016/s0034-4877(97)85935-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Doran, C., D. Hestenes, F. Sommen, and N. Van Acker. "Lie groups as spin groups." Journal of Mathematical Physics 34, no. 8 (1993): 3642–69. http://dx.doi.org/10.1063/1.530050.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Moller, Jesper M. "Homotopy Lie Groups." Bulletin of the American Mathematical Society 32, no. 4 (1995): 413–29. http://dx.doi.org/10.1090/s0273-0979-1995-00613-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Bagley, R. W., T. S. Wu, and J. S. Yang. "Pro-Lie groups." Transactions of the American Mathematical Society 287, no. 2 (1985): 829. http://dx.doi.org/10.1090/s0002-9947-1985-0768744-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

MARQUIS, T., and K.-H. NEEB. "HALF-LIE GROUPS." Transformation Groups 23, no. 3 (2018): 801–40. http://dx.doi.org/10.1007/s00031-018-9485-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Li-Bland, David, and Eckhard Meinrenken. "Dirac Lie groups." Asian Journal of Mathematics 18, no. 5 (2014): 779–816. http://dx.doi.org/10.4310/ajm.2014.v18.n5.a2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Virg�s, Enrique Macias. "Non-closed Lie subgroups of Lie groups." Annals of Global Analysis and Geometry 11, no. 1 (1993): 35–40. http://dx.doi.org/10.1007/bf00773362.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Alioune, Brahim, Mohamed Boucetta, and Ahmed Sid’Ahmed Lessiad. "On Riemann-Poisson Lie groups." Archivum Mathematicum, no. 4 (2020): 225–47. http://dx.doi.org/10.5817/am2020-4-225.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Bucki, Andrew. "Para-f-Lie groups." International Journal of Mathematics and Mathematical Sciences 2003, no. 49 (2003): 3149–52. http://dx.doi.org/10.1155/s0161171203211273.

Testo completo
Abstract (sommario):
Special para-f-structures on Lie groups are studied. It is shown that every para-f-Lie groupGis the quotient of the product of an almost product Lie group and a Lie group with trivial para-f-structure by a discrete subgroup.
Gli stili APA, Harvard, Vancouver, ISO e altri
20

SATOH, TAKAO. "On the basis-conjugating automorphism groups of free groups and free metabelian groups." Mathematical Proceedings of the Cambridge Philosophical Society 158, no. 1 (2014): 83–109. http://dx.doi.org/10.1017/s0305004114000619.

Testo completo
Abstract (sommario):
AbstractIn this paper we study the images of the Johnson homomorphisms of the basis-conjugating automorphism groups of free groups and free metabelian groups. In particular, we show that the Johnson image is contained in a certain proper Lie subalgebra $\mathfrak{p}$Mn of the derivation algebra of the Chen Lie algebra. Furthermore, we completely determine the Johnson images, and give the abelianisation of $\mathfrak{p}$Mn as a Lie algebra by using Morita's trace maps.
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Lord, Nick, and N. Bourbaki. "Lie Groups and Lie Algebras (Chapters 1-3)." Mathematical Gazette 74, no. 468 (1990): 199. http://dx.doi.org/10.2307/3619408.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Mikami, Kentaro, and Fumio Narita. "Dual Lie algebras of Heisenberg Poisson Lie groups." Tsukuba Journal of Mathematics 17, no. 2 (1993): 429–41. http://dx.doi.org/10.21099/tkbjm/1496162270.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Chi, Kieu Phuong, Nguyen Huu Quang, and Bui Cao Van. "The Lie derivative of currents on Lie groups." Lobachevskii Journal of Mathematics 33, no. 1 (2012): 10–21. http://dx.doi.org/10.1134/s1995080212010027.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Hilgert, Joachim, and Karl H. Hofmann. "Semigroups in Lie groups, semialgebras in Lie algebras." Transactions of the American Mathematical Society 288, no. 2 (1985): 481. http://dx.doi.org/10.1090/s0002-9947-1985-0776389-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Ginzburg, Viktor L., and Alan Weinstein. "Lie-Poisson structure on some Poisson Lie groups." Journal of the American Mathematical Society 5, no. 2 (1992): 445. http://dx.doi.org/10.1090/s0894-0347-1992-1126117-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Ruppert, Wolfgang A. F., and Brigitte E. Breckner. "On Lie semigroup analogues of parabolic Lie groups." Semigroup Forum 77, no. 1 (2008): 86–100. http://dx.doi.org/10.1007/s00233-008-9067-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Cohen, Arjeh M., and Robert L. Griess. "Non-Local Lie Primitive Subgroups of Lie Groups." Canadian Journal of Mathematics 45, no. 1 (1993): 88–103. http://dx.doi.org/10.4153/cjm-1993-005-7.

Testo completo
Abstract (sommario):
AbstractBorovik found a Lie primitive subgroup of E8(ℂ) isomorphic to (Alt5 × Sym6) : 2. In this note, we provide a short proof of existence and his result that the conjugacy class of this subgroup is the only one among those of non-local Lie primitive subgroups of finite dimensional simple complex Lie groups having a socle with more than one simple factor.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Berenstein, Arkady, and Vladimir Retakh. "Lie algebras and Lie groups over noncommutative rings." Advances in Mathematics 218, no. 6 (2008): 1723–58. http://dx.doi.org/10.1016/j.aim.2008.03.003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Hanusch, Maximilian. "Regularity of Lie groups." Communications in Analysis and Geometry 30, no. 1 (2022): 53–152. http://dx.doi.org/10.4310/cag.2022.v30.n1.a2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Hasić, Amor. "Representations of Lie Groups." Advances in Linear Algebra & Matrix Theory 11, no. 04 (2021): 117–34. http://dx.doi.org/10.4236/alamt.2021.114009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Marthinsen, Arne. "Interpolation in Lie Groups." SIAM Journal on Numerical Analysis 37, no. 1 (1999): 269–85. http://dx.doi.org/10.1137/s0036142998338861.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Landsberg, J. M., and L. Manivel. "Series of Lie groups." Michigan Mathematical Journal 52, no. 2 (2004): 453–79. http://dx.doi.org/10.1307/mmj/1091112085.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Matumoto, Hisayosi. "split semisimple Lie groups." Duke Mathematical Journal 53, no. 3 (1986): 635–76. http://dx.doi.org/10.1215/s0012-7094-86-05335-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Stembridge, John R. "in complex Lie groups." Duke Mathematical Journal 73, no. 2 (1994): 469–90. http://dx.doi.org/10.1215/s0012-7094-94-07320-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Goetze, Edward R., and Ralf J. Spatzier. "of semisimple Lie groups." Duke Mathematical Journal 88, no. 1 (1997): 1–27. http://dx.doi.org/10.1215/s0012-7094-97-08801-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Calvaruso, Giovanni, and Marco Castrillón López. "Cyclic Lorentzian Lie groups." Geometriae Dedicata 181, no. 1 (2015): 119–36. http://dx.doi.org/10.1007/s10711-015-0116-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Golubchik, I. Z., and A. I. Murseeva. "Homomorphisms of Lie Groups." Journal of Mathematical Sciences 233, no. 5 (2018): 659–65. http://dx.doi.org/10.1007/s10958-018-3953-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Varopoulos, N. Th. "Analysis on Lie groups." Journal of Functional Analysis 76, no. 2 (1988): 346–410. http://dx.doi.org/10.1016/0022-1236(88)90041-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Trzetrzelewski, Maciej. "Supersymmetry and Lie groups." Journal of Mathematical Physics 48, no. 8 (2007): 083508. http://dx.doi.org/10.1063/1.2771418.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Gadea, P. M., J. C. González-Dávila, and J. A. Oubiña. "Cyclic metric Lie groups." Monatshefte für Mathematik 176, no. 2 (2014): 219–39. http://dx.doi.org/10.1007/s00605-014-0692-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Conti, Diego, and Federico A. Rossi. "Einstein nilpotent Lie groups." Journal of Pure and Applied Algebra 223, no. 3 (2019): 976–97. http://dx.doi.org/10.1016/j.jpaa.2018.05.010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Varopoulos, N. TH. "Diffusion on Lie Groups." Canadian Journal of Mathematics 46, no. 2 (1994): 438–48. http://dx.doi.org/10.4153/cjm-1994-023-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Liu, Yanjun, and Wolfgang Willems. "Lie-type-like groups." Journal of Algebra 447 (February 2016): 432–44. http://dx.doi.org/10.1016/j.jalgebra.2015.08.023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Maier, Stephan. "Conformally flat Lie groups." Mathematische Zeitschrift 228, no. 1 (1998): 155–75. http://dx.doi.org/10.1007/pl00004600.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Neeb, Karl-Hermann. "Weakly Exponential Lie Groups." Journal of Algebra 179, no. 2 (1996): 331–61. http://dx.doi.org/10.1006/jabr.1996.0015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Glöckner, Helge. "Lie Groups of Measurable Mappings." Canadian Journal of Mathematics 55, no. 5 (2003): 969–99. http://dx.doi.org/10.4153/cjm-2003-039-9.

Testo completo
Abstract (sommario):
AbstractWe describe new construction principles for infinite-dimensional Lie groups. In particular, given any measure space (X; Σ, μ) and (possibly infinite-dimensional) Lie group G, we construct a Lie group L∞(X; G), which is a Fréchet-Lie group if G is so. We also show that the weak direct product of an arbitrary family (Gi)i∈I of Lie groups can be made a Lie group, modelled on the locally convex direct sum .
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Dobrev, V. K. "Invariant Differential Operators for Non-Compact Lie Groups: Euclidean Jordan Groups or Conformal Lie Groups." Journal of Physics: Conference Series 411 (January 28, 2013): 012012. http://dx.doi.org/10.1088/1742-6596/411/1/012012.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Campagnolo, Caterina, and Holger Kammeyer. "Products of free groups in Lie groups." Journal of Algebra 579 (August 2021): 237–55. http://dx.doi.org/10.1016/j.jalgebra.2021.03.023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Kachi, Hideyuki, and Mamoru Mimura. "Homotopy groups of compact exceptional Lie groups." Proceedings of the Japan Academy, Series A, Mathematical Sciences 75, no. 4 (1999): 47–49. http://dx.doi.org/10.3792/pjaa.75.47.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Stachura, Piotr. "From double Lie groups to quantum groups." Fundamenta Mathematicae 188 (2005): 195–240. http://dx.doi.org/10.4064/fm188-0-10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!