Letteratura scientifica selezionata sul tema "LINEAR ITERATIVE CLUSTERING"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "LINEAR ITERATIVE CLUSTERING".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "LINEAR ITERATIVE CLUSTERING"
Zhao, Jiaxing, Ren Bo, Qibin Hou, Ming-Ming Cheng e Paul Rosin. "FLIC: Fast linear iterative clustering with active search". Computational Visual Media 4, n. 4 (27 ottobre 2018): 333–48. http://dx.doi.org/10.1007/s41095-018-0123-y.
Testo completoYan, Qingan, Long Yang, Chao Liang, Huajun Liu, Ruimin Hu e Chunxia Xiao. "Geometrically Based Linear Iterative Clustering for Quantitative Feature Correspondence". Computer Graphics Forum 35, n. 7 (ottobre 2016): 1–10. http://dx.doi.org/10.1111/cgf.12998.
Testo completoMagaraja, Anousouya Devi, Ezhilarasie Rajapackiyam, Vaitheki Kanagaraj, Suresh Joseph Kanagaraj, Ketan Kotecha, Subramaniyaswamy Vairavasundaram, Mayuri Mehta e Vasile Palade. "A Hybrid Linear Iterative Clustering and Bayes Classification-Based GrabCut Segmentation Scheme for Dynamic Detection of Cervical Cancer". Applied Sciences 12, n. 20 (18 ottobre 2022): 10522. http://dx.doi.org/10.3390/app122010522.
Testo completoEun, Hyunjun, Yoonhyung Kim, Chanho Jung e Changick Kim. "Adaptive Sampling of Initial Cluster Centers for Simple Linear Iterative Clustering". Journal of Korean Institute of Communications and Information Sciences 43, n. 1 (31 gennaio 2018): 20–23. http://dx.doi.org/10.7840/kics.2018.43.1.20.
Testo completoOh, Ki-Won, e Kang-Sun Choi. "Acceleration of simple linear iterative clustering using early candidate cluster exclusion". Journal of Real-Time Image Processing 16, n. 4 (31 marzo 2016): 945–56. http://dx.doi.org/10.1007/s11554-016-0583-1.
Testo completoChoi, Kang-Sun, e Ki-Won Oh. "Subsampling-based acceleration of simple linear iterative clustering for superpixel segmentation". Computer Vision and Image Understanding 146 (maggio 2016): 1–8. http://dx.doi.org/10.1016/j.cviu.2016.02.018.
Testo completoYamamoto, Takeshi, Katsuhiro Honda, Akira Notsu e Hidetomo Ichihashi. "A Comparative Study on TIBA Imputation Methods in FCMdd-Based Linear Clustering with Relational Data". Advances in Fuzzy Systems 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/265170.
Testo completoHuang, Hui-Yu, e Zhe-Hao Liu. "Stereo Matching with Spatiotemporal Disparity Refinement Using Simple Linear Iterative Clustering Segmentation". Electronics 10, n. 6 (18 marzo 2021): 717. http://dx.doi.org/10.3390/electronics10060717.
Testo completoCong, Jinyu, Benzheng Wei, Yilong Yin, Xiaoming Xi e Yuanjie Zheng. "Performance evaluation of simple linear iterative clustering algorithm on medical image processing". Bio-Medical Materials and Engineering 24, n. 6 (2014): 3231–38. http://dx.doi.org/10.3233/bme-141145.
Testo completoMeenalochani, Manickam, Natarajan Hemavathi e Selvaraj Sudha. "Performance analysis of iterative linear regression-based clustering in wireless sensor networks". IET Science, Measurement & Technology 14, n. 4 (1 giugno 2020): 423–29. http://dx.doi.org/10.1049/iet-smt.2019.0258.
Testo completoTesi sul tema "LINEAR ITERATIVE CLUSTERING"
Alexandre, Eduardo Barreto. "IFT-SLIC: geração de superpixels com base em agrupamento iterativo linear simples e transformada imagem-floresta". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-24092017-235915/.
Testo completoImage representation based on superpixels has become indispensable for improving efficiency in Computer Vision systems. Object recognition, segmentation, depth estimation, and body model estimation are some important problems where superpixels can be applied. However, superpixels can influence the quality of the system results in a positive or negative manner, depending on how well they respect the object boundaries in the image. In this work, we propose an iterative method for superpixels generation, known as IFT-SLIC, which is based on sequences of Image Foresting Transforms, starting with a regular grid for seed sampling. A seed pixel recomputation procedure is applied per each iteration, generating connected superpixels with a better adherence to objects borders present in the image. The superpixels obtained by IFT-SLIC structurally correspond to spanning trees rooted at those seeds, that naturally define superpixels as regions of strongly connected pixels. Compared to Simple Linear Iterative Clustering (SLIC), IFT-SLIC considers minimum path costs between pixel and cluster centers rather than their direct distances. Non-monotonically increasing connectivity functions are explored in our IFT-SLIC approach leading to improved performance. Experimental results indicate better superpixel extraction by the proposed approach in comparation to that of SLIC. We also analyze the effectiveness of IFT-SLIC, according to efficiency, and accuracy on an application -- namely sky segmentation. The results show that IFT-SLIC can be competitive to the best state-of-the-art methods and superior to many others, which motivates it\'s further development for different applications.
Neubert, Peer. "Superpixels and their Application for Visual Place Recognition in Changing Environments". Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-190241.
Testo completoBAGRI, VIKAS. "SIMPLE LINEAR ITERATIVE CLUSTERING AND HAAR WAVELET BASED IMAGE FORGERY DETECTION". Thesis, 2018. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16358.
Testo completoWang, Wei. "Spatially Adaptive Analysis and Segmentation of Polarimetric SAR Data". Doctoral thesis, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218081.
Testo completoQC 20171123
Capitoli di libri sul tema "LINEAR ITERATIVE CLUSTERING"
Liao, Nannan, Hui Liu, Cheng Li, Xia Ren e Baolong Guo. "Simple Linear Iterative Clustering with Efficiency". In Advances in Intelligent Information Hiding and Multimedia Signal Processing, 109–17. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1057-9_11.
Testo completoZhang, Houwang, e Yuan Zhu. "KSLIC: K-mediods Clustering Based Simple Linear Iterative Clustering". In Pattern Recognition and Computer Vision, 519–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31723-2_44.
Testo completoDing, Tianyou, Wentao Zhang e Chunning Zhou. "Clustering Effect of Iterative Differential and Linear Trails". In Information Security and Cryptology, 252–71. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26553-2_13.
Testo completoChoi, Kang-Sun, e Ki-Won Oh. "Fast Simple Linear Iterative Clustering by Early Candidate Cluster Elimination". In Pattern Recognition and Image Analysis, 579–86. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19390-8_65.
Testo completoWang, Jing, Zilan Hu e Haixian Wang. "Parcellating Whole Brain for Individuals by Simple Linear Iterative Clustering". In Neural Information Processing, 131–39. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46675-0_15.
Testo completoSu, Fan, Hui Xu, Guodong Chen, Zhenhua Wang, Lining Sun e Zheng Wang. "Improved Simple Linear Iterative Clustering Algorithm Using HSL Color Space". In Intelligent Robotics and Applications, 413–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27541-9_34.
Testo completoPavithra, G., T. C. Manjunath e Dharmanna Lamani. "Detection of Primary Glaucoma in Humans Using Simple Linear Iterative Clustering (SLIC) Algorithm". In Lecture Notes on Data Engineering and Communications Technologies, 417–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24643-3_50.
Testo completoMathews, Arun B., S. U. Aswathy e Ajith Abraham. "Lung CT Image Enhancement Using Improved Linear Iterative Clustering for Tumor Detection in the Juxta Vascular Region". In Lecture Notes in Networks and Systems, 463–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09176-6_53.
Testo completoChowdhary, Chiranji Lal. "Simple Linear Iterative Clustering (SLIC) and Graph Theory-Based Image Segmentation". In Handbook of Research on Machine Learning Techniques for Pattern Recognition and Information Security, 157–70. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3299-7.ch010.
Testo completoWang, Shuliang, Wenyan Gan, Deyi Li e Deren Li. "Data Field for Hierarchical Clustering". In Developments in Data Extraction, Management, and Analysis, 303–24. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2148-0.ch014.
Testo completoAtti di convegni sul tema "LINEAR ITERATIVE CLUSTERING"
Kim, Kwang-Shik, Dongni Zhang, Mun-Cheon Kang e Sung-Jea Ko. "Improved simple linear iterative clustering superpixels". In 2013 IEEE 17th International Symposium on Consumer Electronics (ISCE). IEEE, 2013. http://dx.doi.org/10.1109/isce.2013.6570216.
Testo completoLi, Shiren, Junwei Huang, Jiayu Shang e Xiongyi Wei. "A robust simple linear iterative clustering algorithm". In 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP). IEEE, 2017. http://dx.doi.org/10.1109/siprocess.2017.8124557.
Testo completoKang-Sun Choi e Ki-Won Oh. "Fast simple linear iterative clustering for superpixel segmentation". In 2015 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2015. http://dx.doi.org/10.1109/icce.2015.7066521.
Testo completoWei, Zhifei, Baolong Guo, Cheng Li e Zhijie Chen. "Speeded-up Simple Linear Iterative Clustering Based on Region Homogeneity". In 2019 2nd International Conference on Safety Produce Informatization (IICSPI). IEEE, 2019. http://dx.doi.org/10.1109/iicspi48186.2019.9096051.
Testo completoAl-Azawi, Razi J., Qussay S. Al-Jubouri e Yousra Abd Mohammed. "Enhanced Algorithm of Superpixel Segmentation Using Simple Linear Iterative Clustering". In 2019 12th International Conference on Developments in eSystems Engineering (DeSE). IEEE, 2019. http://dx.doi.org/10.1109/dese.2019.00038.
Testo completoMargapuri, Venkat, Trevor Rife, Chaney Courtney, Brandon Schlautman, Kai Zhao e Mitchell Neilsen. "Fractional Vegetation Cover Estimation using Hough Lines and Linear Iterative Clustering". In 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS). IEEE, 2022. http://dx.doi.org/10.1109/ipas55744.2022.10052996.
Testo completoDoğan, Çağdaş. "Seaweed Growth Detection in Aquaculture Environment Using Simple Linear Iterative Clustering Method". In The 8th International Conference of Biotechnology, Environment and Engineering Sciences. SRO media, 2020. http://dx.doi.org/10.46617/icbe8001.
Testo completoJunliang, Ma, Wang Xili e Xiao Bing. "Semi-supervised image segmentation with globalized probability of boundary and simple linear iterative clustering". In 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE, 2017. http://dx.doi.org/10.1109/fskd.2017.8393374.
Testo completoAravinda, H. L., e M. V. Sudhamani. "Simple Linear Iterative Clustering Based Tumor Segmentation in Liver Region of Abdominal CT-scan". In 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). IEEE, 2017. http://dx.doi.org/10.1109/icraect.2017.18.
Testo completoChen, Yen-Wei, Akira Furukawa, Ayako Taniguchi, Tomoko Tateyama e Shuzo Kanasaki. "Automated assessment of small bowel motility function based on simple linear iterative clustering (SLIC)". In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015. http://dx.doi.org/10.1109/fskd.2015.7382209.
Testo completo