Letteratura scientifica selezionata sul tema "Lithium-free"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Lithium-free".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Lithium-free"

1

Shen, Kai, Zhenjiang Cao, Yongzheng Shi, Yongzheng Zhang, Bin Li e Shubin Yang. "3D Printing Lithium Salt towards Dendrite-free Lithium Anodes". Energy Storage Materials 35 (marzo 2021): 108–13. http://dx.doi.org/10.1016/j.ensm.2020.11.022.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Balaish, Moran, Emanuel Peled, Diana Golodnitsky e Yair Ein-Eli. "Liquid-Free Lithium-Oxygen Batteries". Angewandte Chemie 127, n. 2 (3 ottobre 2014): 446–50. http://dx.doi.org/10.1002/ange.201408008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Winterkorn, Martin M., e Tim Holme. "(Invited) Li-Free Anode Development at Quantumscape". ECS Meeting Abstracts MA2022-02, n. 47 (9 ottobre 2022): 1733. http://dx.doi.org/10.1149/ma2022-02471733mtgabs.

Testo completo
Abstract (sommario):
QuantumScape is developing a solid-state battery with a lithium-metal anode to enable long-range, faster charging, low-cost EVs. The technology features an anode that is lithium-free as manufactured, with the lithium being delivered entirely from the cathode material. The lithium-free approach offers a significant cost savings relative to approaches that utilize an excess lithium foil or vapor deposition process. This talk will highlight the scientific and engineering challenges in developing an anode-free solid-state battery, with a historical overview and a snapshot of the progress at QuantumScape. QuantumScape was founded in 2010 with a mission to revolutionize energy storage to enable a sustainable future.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Gervillie, Charlotte, Louis Ah, Alex Ruili Liu, Chen-Jui Huang e Shirley Meng. "Deciphering the Impact of the Active Lithium Reservoir in Anode-Free Pouch Cells". ECS Meeting Abstracts MA2024-02, n. 7 (22 novembre 2024): 889. https://doi.org/10.1149/ma2024-027889mtgabs.

Testo completo
Abstract (sommario):
Anode-free batteries, which revolutionize energy storage by discarding traditional anodes in favor of copper foil to plate lithium directly from the cathode, offer increased energy densities and better safety than conventional lithium-metal cells. However, their advantage is tempered by a significantly reduced cycle life, attributed to lithium loss through parasitic reactions. As a result, inactive (‘dead’) lithium accumulates over cycling, including (electro)chemically formed Li+ compounds in the solid electrolyte interphase (SEI) and isolated unreacted metallic Li0, resulting in capacity loss and safety hazards. Consequently, to continue enhancing the performance of anode-free cells, it appears crucial to differentiate and quantify the various forms of lithium in these cells and monitor their distribution and evolution throughout the cycling process, depending on various conditions such as pressure or electrolytes. Compared to lithium metal cells, the problem might appear simplified for anode-free cells as there is no active lithium compensation from the anode, and all the active lithium is initially stored within the cathode. However, the intricate interplay of the cathode's first-cycle irreversibility and lithium plating/stripping efficiency significantly influences the shape of the capacity retention curves and the measurements of coulombic efficiency (CE). Herein we aim to clarify the contribution of the lithium reservoir to the anode-free cell performances. We report a systematic study of the active lithium reservoir and unreacted metallic Li0 evolution in anode-free LiNi0.6Mn0.2Co0.2O2 (NMC622)||Copper (Cu) commercial pouch cells. By taking advantage of a discharge characteristic of the NMC622 cathode at low voltage (<1.5 V), we could quantify the presence of remaining active lithium at the anode. Afterwards, titration gas chromatography was utilized to measure the remaining inactive Li0 on the discharged samples. By coupling the quantification techniques to observations of the anode local microstructure by cryogenic scanning electron microscopy, we elucidate the formation and evolution mechanism of the lithium reservoir and inactive metallic lithium in different types of electrolytes. As a result, we demonstrated that the once-considered drawback of Ni-rich layered oxide cathodes, namely the first cycled intrinsic irreversible capacity, can be manipulated to build a lithium reservoir at the anode and extend the cycle life of anode-free cells (see Figure 1, bottom left). Additionally, the formerly unclear reason for the capacity degradation discrepancy of anode-free cells under different C-rates was investigated and attributed to the correlation between lithium utilization and reservoirs (see Figure 1, bottom right). In contrast to the first-cycle irreversibility unique to certain types of cathode materials, this approach can be applied to all types of cells having polarization phenomena at high currents to enhance their longevity in anode-free configurations. Consequently, by employing protocols with slow charge and fast discharge, the lithium reservoir at the anode is maximized, and the performances of the anode-free cells appear stable for a longer number of cycles. With this knowledge, one can regulate the ratio between lithium utilization and lithium reservoirs for extended capacity retention or high initial reversible capacity designated for different applications. We believe the concept of this Li reservoir can be further extended to other approaches and opens new opportunities, taking advantage of cathode intrinsic irreversibility and kinetic limitations to extend anode-free cells’ lifespan. Figure 1
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kalinina, A. A., I. A. Konopkina, O. V. Vakhnina, I. V. Koroleva, K. B. Zhogova e S. A. Annikova. "The choice of methods for lithium and boron determination in lithium-boron alloys". Industrial laboratory. Diagnostics of materials 89, n. 1 (21 gennaio 2023): 20–27. http://dx.doi.org/10.26896/1028-6861-2023-89-1-20-27.

Testo completo
Abstract (sommario):
A lithium-boron alloy (LBA) with a high lithium content (up to 70%) is used as an anode material for molten salt batteries in chemical sources of current. We present a complex of developed techniques for determining mass fractions of free lithium, total lithium, and total boron in lithium-boron alloys containing lithium mass fractions no more than 70%, boron mass fractions — no less than 26%. Optimal conditions for preparation of LBA samples and subsequent free lithium extraction from them are determined. The developed techniques are intended for i) extraction-titrimetric determination of free lithium in a content range of 20 - 50% (the relative total error no more than 1.1%); ii) determination of the total lithium content using flame atomic emission spectrometry in a content range of 59.0 - 96.0% (the relative overall error no more than 2.7%; iii) determination of the total boron content by two methods, i.e., potentiometric titration within a content range of 5 - 40% (the relative total error no more than 1.3%) and flame atomic absorption spectrometry within a content range of 4.9-50.7% (the relative total error no more than 4.9%). The results of analysis of full-scale LBA samples for the content of free lithium, total lithium and total boron are presented. It is shown that the application of two techniques for the determination of total boron content in lithium-boron alloys makes it possible to get the convergent results within the limits of measurement errors. The developed techniques are certified by the metrological service of the enterprise and can be used for the incoming and process control of the LBA production.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Chen, Xiang, Zhuqing Zhao, Jiakang Qu, Beilei Zhang, Xueyong Ding, Yunfeng Geng, Hongwei Xie, Dihua Wang e Huayi Yin. "Electrolysis of Lithium-Free Molten Carbonates". ACS Sustainable Chemistry & Engineering 9, n. 11 (11 marzo 2021): 4167–74. http://dx.doi.org/10.1021/acssuschemeng.1c00028.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Kutbee, Arwa T., Mohamed T. Ghoneim, Sally M. Ahmad e Muhammad M. Hussain. "Free-Form Flexible Lithium-Ion Microbattery". IEEE Transactions on Nanotechnology 15, n. 3 (maggio 2016): 402–8. http://dx.doi.org/10.1109/tnano.2016.2537338.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Schollhammer, Jean, Mohammad Amin Baghban e Katia Gallo. "Modal birefringence-free lithium niobate waveguides". Optics Letters 42, n. 18 (11 settembre 2017): 3578. http://dx.doi.org/10.1364/ol.42.003578.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Scheers, Johan, Du-Hyun Lim, Jae-Kwang Kim, Elie Paillard, Wesley A. Henderson, Patrik Johansson, Jou-Hyeon Ahn e Per Jacobsson. "All fluorine-free lithium battery electrolytes". Journal of Power Sources 251 (aprile 2014): 451–58. http://dx.doi.org/10.1016/j.jpowsour.2013.11.042.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Prachi Patel, special to C&EN. "Lithium-ion batteries go cobalt-free". C&EN Global Enterprise 98, n. 29 (27 luglio 2020): 9. http://dx.doi.org/10.1021/cen-09829-scicon5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Tesi sul tema "Lithium-free"

1

Hirata, Kazuhisa. "Studies on Carbonate-Free Electrolytes Based on Lithium Bis (fluorosulfonyl) imide for Lithium-Ion Batteries". Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263358.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Mangham, Rebecca Ruth. "Electrophoretic deposition of binder free electrodes for lithium ion batteries". Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/419057/.

Testo completo
Abstract (sommario):
Current batteries for soldier systems rely on many different standard power source sizes, shapes and weights. The integration of power sources into space-limited platforms and to fit to a soldier correctly is difficult. Conventional layer by layer manufacturing approaches are still relied on for battery production. 3D battery systems offer the potential to produce batteries that are bespoke to equipment size and shape whilst maintaining the advantages of the thin film battery manufacturing techniques. There are several techniques available to produce these 3D battery systems and this thesis will look at the application of on one such technique, electrophoretic deposition to lithium iron phosphate (LFP) battery positive electrode materials. Electrophoretic deposition is a technique where an electric field is used to deposit particles from a colloidal suspension onto a conducting surface. This thesis will present the development of the electrophoresis technique for flat plate samples of the LFP through deposition from a suspension of LFP particles in iso propyl alcohol with a metal salt. The results of studies using cyclic voltammetry and impedance spectroscopy will then be presented and discussed in relation to deposition parameters and to gain a greater understanding of the resistances present between the LFP particles in the binder and carbon additive-free electrodes.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lundin, Simon, e Linus Lundin. "Fire properties of fluorine-free electrolytes for lithium-ion batteries". Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72499.

Testo completo
Abstract (sommario):
Many countries including Sweden are planning to replace fossil fuel-based vehicles with electric vehicles. This is one of the main reasons that companies all over the world are investing more and more money in the development of lithium-ion batteries, for electric vehicles. There are several different risks with the conventional lithium-ion batteries including the high flammability of the electrolytes, which can lead to high heat release rate, risk of explosion and high toxicity in the form of hydrogen fluoride gas. The hydrogen fluoride is lethal even at low concentration. These potential risks are based on the structure of the flammable electrolytes inside the lithium-ion batteries. Because of that, there is a big interest in finding an electrolyte with similar battery performance and better fire properties as compared with the conventional electrolytes commercially available on the market.   The intent with this work is to investigate the fire properties of different halogen-free electrolytes. The two newly developed salts Li[MEA] & Li[MEEA] as well as the available salt Li[BOB] will be compared with the commercially used halogen-containing electrolyte based on lithium hexafluorophosphate (LiPF6) salt.   Physical and electrochemical properties of these electrolytes such as solubility in different organic solvents, density, viscosity, ionic conductivity and electrochemical window will be studied in the first step. The electrolytes showing the most promising electrochemical properties will then be further investigated regarding fire properties, heat release rate, flash point and toxicity. The electrolytes will be compared with the conventional electrolyte containing LiPF6.   Li[BOB] was not dissolved in the solvents with the strongest dissolving properties, therefore it was not further tested. The electrolytes that were tested regarding fire properties were Li[MEA] and Li[MEEA] with the organic solvents of ethylene carbonate and dimethyl carbonate. Ionic liquid was also added to Li[MEEA] to investigate how it affected the fire properties for the electrolyte.   When examine the heat release rate for the newly developed salts, as well as LiPF6, it was observed that the highest peaks were similar to each other. The combustion time for the electrolyte containing LiPF6 was noticeable shorter than for the other three electrolytes. This is likely due to the fluorine content in LiPF6. The electrolytes undergoing the cone calorimeter test in this work was not charged so therefore the peaks of the heat release rate may look different. For further studies, it could be of interest to construct a complete lithium-ion battery using these electrolytes to see how the battery cells and the electrolytes behave in different set of charges.   Another essential point, is the ignition time that showed varied times for the tests containing Li[MEEA] together with the organic solvents and with the added ionic liquid. This is an interesting result that probably can be explained by the homogeneity of the electrolyte. The homogeneity was only verified with the help of the human eye and therefore it may not be fully dissolved.   The flashpoint for the different mixtures of electrolytes showed values of interest where the electrolyte containing ionic liquid that showed the lowest flashpoint. This was unexpected concerning that these types of additives are common for improving the fire resistance capacity.   The key aspect discussed when analyzing the result from the FTIR spectroscopy was how the Li[MEA], Li[MEEA] and LiPF6 salts varied. The ones that did not have any fluorine in its structure resulted in production of carbon dioxide. However, the electrolyte containing fluorine resulted, as expected, in values of hydrogen fluorine and carbon dioxide but also other combustion products that was hard to determine.   These salts and electrolytes need to be further studied and tested to see if it is possible to use them in an actual lithium-ion battery. Besides further tests of the salts and ionic liquid tested in this work, it is important that the work with conventional and newly developed electrolytes aims for improvements in fire resistance as well as toxicity.
Många länder inklusive Sverige planerar att byta ut fordon som använder fossila bränslen mot elfordon. Detta är en av huvudanledningarna till att företag runt om i världen satsar mer och mer pengar på att utveckla litiumjonbatterier för elfordon. Litiumjonbatterier medför en del risker såsom hög värmeutveckling, brandfarliga vätskor, risk för explosion och toxiska gaser samt produceringen av vätefluorid. Redan vid låga koncentrationer är vätefluoriden dödlig. Riskerna baseras på strukturen av elektrolyten som finns i litiumjonbatteriet. På grund av dessa risker så är det intressant att utveckla en elektrolyt som har liknande batteriegenskaper men bättre brandegenskaper än de elektrolyter som finns och används idag.   I detta arbete har brandegenskaper för olika halogenfria elektrolyter testats. De två nyutvecklade salterna Li[MEA] & Li[MEEA] har tillsammans med det existerande saltet Li[BOB] jämförts med det kommersiella saltet litium hexafluorfosfat (LiPF6) som används till många elektrolyter i dagens litiumjonbatterier.   De fysiska och elektrokemiska egenskaperna såsom löslighet i organiska lösningsmedel, densitet, viskositet, jonkonduktiviet och elektrokemiskt fönster har testats för elektrolyterna i den första delen av arbetet. Elektrolyterna som uppvisade de mest lovande elektrokemiska egenskaper har även testats med avseende på brandegenskaperna, så som värmeutveckling, flampunkt och toxicitet. Elektrolyterna jämfördes mot den vanligt förekommande elektrolyten som innehåller litium hexafluorfosfat.   Saltet Li[BOB] löstes inte i lösningsmedel med bra lösningsegenskaper, vilket var anledningen till att det inte genomfördes ytterligare tester på den. Elektrolyterna som det genomfördes tester på avseende på brandegenskaper innehöll Li[MEA] och Li[MEEA] tillsammans med de organiska lösningsmedlen etylenekarbonat och dimetylkarbonat. För Li[MEEA] tillsattes det även jonvätska för att undersöka hur jonvätskan påverkar brandegenskaperna för elektrolyten.   När värmeutveckling för det nyutvecklade salterna och LiPF6 undersöktes, så uppvisade de liknande värden. Anmärkningsvärt var dock att förbränningstiden för LiPF6 varade under en kortare period i jämförelse med de tre andra elektrolyterna. En trolig orsak till detta är att LiPF6 innehåller fluor. Elektrolyterna som provades i konkalorimeter i detta arbete var ej laddade, vilket kan medföra att värmeutvecklingen kan se annorlunda ut vid ett laddat tillstånd. För framtida studier kan det vara intressant att konstruera ett komplett litiumjonbatteri, för att se hur elektrolyterna fungerar och påverkas, beroende på laddningsnivå.   Antändningstiden för Li[MEEA] blandat med de organiska lösningsmedlen tillsammans med jonvätska varierade mycket. Detta är ett intressant resultat, som förmodligen kan förklaras av homogeniteten på elektrolyten. Homogeniteten verifierades enbart okulärt, vilket inte säkerställer att jonvätskan har löst sig fullständigt i elektrolyten.   Resultat för flampunkten för det olika elektrolyterna var intressant, då elektrolyten som innehöll jonvätska visade på lägst flampunkt. Detta var oväntat då tillsatser som jonvätska brukar förbättra brandmotståndet.   Resultatet för FTIR-spektroskopin analyserades för att se hur Li[MEA], Li[MEEA] och LiPF6 skiljde sig åt. De elektrolyter som inte innehöll fluor, producerade bara koldioxid. Medans elektrolyten som innehöll fluor producerade, som väntat, vätefluorid och koldioxid, men även andra gaser som var svåranalyserade.   De framtagna elektrolyterna i detta arbete behöver studeras vidare och fler tester bör genomföras för att se om det finns en möjlighet att använda dem i faktiska litiumjonbatterier. Förutom att testa elektrolyterna i just detta arbete är det viktigt att forskningen kring brandegenskaper och toxiska egenskaper för elektrolyter fortsätter i framtiden.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Balasubramanian, Prasanth [Verfasser]. "Cobalt free nanomaterials as positive electrodes for Lithium ion battery / Prasanth Balasubramanian". Ulm : Universität Ulm, 2019. http://d-nb.info/1180496973/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Rowan, Michael E. "Doppler-Free Saturated Fluorescence Spectroscopy of Lithium Using a Stabilized Frequency Comb". Oberlin College Honors Theses / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1368804208.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Hua, Weibo [Verfasser], e H. [Akademischer Betreuer] Ehrenberg. "Lithium- and oxygen-driven structural evolution in Co-free Li-Mn-rich oxides as cathodes for lithium ion batteries / Weibo Hua ; Betreuer: H. Ehrenberg". Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/118613996X/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Neto, Décio Batista de Freitas. "Desenvolvimento e estudo eletroquímico de eletrodos híbridos do tipo nonwoven de nanotubos de carbono e MnO2 para bateria de íons lítio e supercapacitor". Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/59/59138/tde-09052018-092407/.

Testo completo
Abstract (sommario):
O presente trabalho está relacionado com o desenvolvimento e análise do desempenho eletroquímico de eletrodos compósitos do tipo nonwoven também chamados de free-standing binder/metal-free electrodes, em eletrólito líquido orgânico que contem íons de lítio. Os eletrodos de excelente resistência mecânica, livre de metais e binder, e que podem conter vários miligramas dematerial eletroativo por cm3, são constituídos por substratos de fibras de carbono derivado de poliacrilonitrila, e a carga eletroativa composta por nanotubos de carbono de parede múltipla (NTC) e nanotubos de MnO2 (NT). Foram utilizados dois tipos de substrato (denominados aqui de feltro e tecido de carbono) de diferentes condutividades eletrônicas e geometrias tridimensionais. O recobrimento das fibras de carbono dos nonwovens com NTC foi realizado por decomposição química de vapor (CVD) mantendo-se constante as variáveis operacionais, o que resultou em NTC do mesmo tipo para todas as amostras e um bom controle da massa depositada. O MnO2 foi incorporado por eletrodeposição em eletrólito aquoso, esse método garantiu um bom controle de massa eletrodepositada de NT. Os eletrodos obtidos foram caracterizados estruturalmente empregando-se microscopia de varredura (MEV), difração de raios-X e microscopia Raman. Para análise de desempenho eletroquímico e mecanismo de armazenagem/conversão de energia nos eletrodos empregadas as técnicas de voltametria e cronopotenciometria cíclicas. Os resultados mostram que os eletrodos compósitos são híbridos, podem atuar como capacitores e eletrodos de baterias de íons lítio. As metodologias aplicadas se mostram extremamente reprodutíveis reprodutivas e controláveis. Depedendo das composições e combinações foi possível obter capacidades específicas associadas com armazenagem/estocagem de lítio em altas densidades de corrente (A/g) na janela de potencial de 0,005 - 3,5V vs Li/Li+ (por exemplo, 800 mAh/g em 1 A/g, taxa C-rate = 1,25C, 400 mAh/g em 2,66A/g, taxa C-rate = 5C). A eficiência faradaica para o primeiro ciclo carga/descarga variou entre 83% e 54%, dependendo da quantidade de MnO2 e da corrente aplicada. Foi observado que é possível melhorar ainda mais os resultados com adição de outros constituintes, como por exemplo, a adição de partículas de prata (<1 % em peso). Neste caso os eletrodos forneceram eficiência faradaica de 83%, 1.100 mAh/g em 1,7A/g, em taxa C-rate = 1,66C e 550 mAh/g em 2,8A/g em taxa C-rate = 5C). Em termos de capacitância os compósitos também se mostram muito positivos. Valores de capacitância da ordem de 180F/g foram facilmente obtidos em tempos de descarga de 58s e num intervalo de potencial em relação ao Li/Li+ (~3,05 V vs H2/H+) de 1,4 a 3,8V vs Li/Li+, o que permite gerar densidade de energia e potência da ordem de 63 Wh/kg e 3,6 kW/kg respectivamente. Os eletrodos estudados podem atuar como eletrodo em baterias de íons lítio e em dispositivos de capacitores, o que significa que pode ser útil para o desenvolvimento de sistemas híbridos de armazenamento/conversão de energia, particularmente, de sistemas híbridos bipolar bateria-supercapacitor.
The present work is correlated with the development and electrochemical analisys of a nonwoven kind of electrode, also called as free-standing binder/metal-free electrodes, into lithium-ion liquid organic electrolyte, whereas the constituents are the substrate made of carbon fiber derived from carbonization of polyacrylonitrile, and the electroactive material which are defective multi-walled carbon nanotubes (MWCNT) and MnO2 nanotubes. Two types of nonwoven substrates (here denominated felt and cloth) with different electronic conductivity and three-dimensional geometry were employed. MWCNT coating of the nonwoven carbon fibers was achieved with chemical vapor decomposition (CVD) of methanol at same growth conditions, which resulted in electrodes with same type of MWCNT and a good control of the deposited mass. MnO2 was incorporaded by electrodeposition in aqueous electrolyte and this methodology was found appropriate to provide electrodes with same MnO2 NT loading, although the structural phase of MnO2 was affect by nonwoven substrate type. The robusts electrodes able to support several miligrams of electroactive material per cm3 obtained were structurally characterized using scanning electron microscopy (SEM, TEM), X-ray diffraction and Raman microscopy. It was employed cyclic voltammetry at different scan rate and chronopotentiometry (discharge/charge curves at galvanostatic conditions) aiming the understanding of the electrochemical performance and mechanism of energy storage/conversion of MnO2/MWCNT coated nonwoven electrodes. The results show that the composite electrode is hybrid, can act like capacitor or lithium ion battery electrode. It can provide very high specific capacity associated with storage/extraction of Li same in elevated gravimetric current density of A/g in the potential window of 0.005-3.5V vs Li/Li+ (e.g 800 mAh/g at 1 A/g, rate = 1,25C, 400 mAh/g at 2,66A/g, rate = 5C). The Faradic efficiency measure during the first charge/discharge cycle was between 83% to 54% depending on amount of MnO2 constituent and applied current. It was also observed a gain in the electrochemical performance of MnO2/MWCNT coated nonwoven electrode with Ag nanoparticles addition (about 1% wt). With presence of Ag constituent into the composites nonwovens it was found for instance 83% of Faradic efficiency at 1st discharge/charge cycle, 1,100 mAh/g at 1,7A/g rate = 1,66C and 550 mAh/g at 2,8A/g rate = 5C. In terms of capacitance the nonwoven were able to provide values like 180 F/g during 58s in high voltage window (1.4-3.8V vs LI/Li+) which correspond to energy and power density of 63 Wh/kg e 3.6 kW/kg, respectively. The electrodes developed in the present study could therefore act both as an electrode for Li intercalation and for capacitors devices, which means that it can be useful for the development of hybrid energy storage/conversion systems, particularly, bipolar battery-supercapacitor hybrid single.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

AL-Shroofy, Mohanad N. "UNDERSTANDING AND IMPROVING MANUFACTURING PROCESSES FOR MAKING LITHIUM-ION BATTERY ELECTRODES". UKnowledge, 2017. http://uknowledge.uky.edu/cme_etds/76.

Testo completo
Abstract (sommario):
Lithium-ion batteries (LIBs) have been widely used as the most popular rechargeable energy storage and power sources in today’s portable electronics, electric vehicles, and plug-in hybrid electric vehicles. LIBs have gained much interest worldwide in the last three decades because of their high energy density, voltage, rate of charge and discharge, reliability, and design flexibility. I am exploring the possibility of developing battery manufacturing technologies that would lower the cost, reduce the environmental impact, and increase cell performance and durability. This dissertation is focused firstly on understanding the effect of mixing sequence (the order of introducing materials) and optimizing the electrode fabrication for the best electrochemical performance, durability, lower cost, and improve the existing manufacturing processes. The electrode system consists of active material, polymer binder, conductive agent, and solvent. I have investigated four different mixing sequences to prepare the slurries for making the positive electrode. The key sequence-related factor appears to be whether the active material and conductive agent are mixed in the presence of or prior to the introduction of the binder solution. The mixing sequences 1, 2, 3, and 4 were optimized, and the rheological behavior of the slurries, morphology, conductivity, and mechanical and electrochemical properties of electrodes were investigated. Slurries from sequences 1 and 4 show different rheological properties from 2 and 3. The amount of NMP required to achieve a comparable final slurry viscosity differed significantly for the sequences under study. The sequence 1 shows better long-term cycling behavior than sequences 2, 3 and 4. This study quantifies the link between electrode slurry mix parameters and electrode quality. Secondly, a new method of making lithium-ion battery electrodes by adapting an immersion precipitation (IP) technology commonly used in membrane manufacturing was developed and demonstrated. The composition, structure, and electrochemical performance of the electrode made by the IP method were compared favorably with that made by the conventional method. The toxic and expensive organic solvent (NMP) was captured in coagulation bath instead of being released to the atmosphere. The IP electrodes show an excellent performance and durability at potentially lower cost and less environmental impact. Thirdly, I have developed and demonstrated a solvent-free dry-powder coating process for making LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrodes in lithium-ion batteries, and compared the performance and durability of electrodes made by the dry-powder coating processes with that by wet-slurry coating processes. The technology that has been used is the electrostatic spray deposition (ESD) process. This process eliminates volatile organic compound emission, reduces thermal curing time from hours to minutes, and offers high deposition rates onto large surfaces. The long-term cycling shows that the dry-powder coated electrodes have similar performance and durability as the conventional wet-slurry made electrodes.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

La, Porta Thomas. "Systèmes d’amorçage à base de calcium pour la polymérisation anionique du butadiène : vers une chimie sans lithium". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0469.

Testo completo
Abstract (sommario):
La microstructure et la macrostructure du polybutadiène jouent un rôle essentiel dans les propriétés thermomécaniques du matériau, qui est largement utilisé dans la fabrication de pneumatiques. Grâce à son contrôle sur le processus de polymérisation et à son caractère vivant, la polymérisation anionique permet d’obtenir avec précision une grande variété d'architectures polymères, offrant ainsi la possibilité de moduler les propriétés du matériau. Cependant, la polymérisation anionique du butadiène est largement dominée par l’utilisation d’amorceurs à base lithium. La demande croissante du lithium, en particulier dans le secteur du stockage de l’énergie, impose aujourd’hui de proposer des systèmes anioniques sans lithium comme alternativedurable, et économiquement favorable. Par ailleurs, la synthèse de polybutadiènes avec une teneur élevée en unités 1,4-trans est peu étudiée en polymérisation anionique. Cette thèse propose des systèmes multi-métalliques à base de calcium pour d’une part une chimie sans lithium, et d’autre part. la synthèse de polybutadiènes stéréospécifiques 1,4-trans de manière contrôlée et vivante. Différentes synthèses de complexes de calcium, puis plusieurs systèmes d’amorçages novateurs sont proposés. En particulier, les systèmes calcium-lithium, calcium-magnésium, calcium-aluminium et calcium-sodium sont étudiés
The microstructure and macrostructure of polybutadienes play an essential role in the thermomechanical properties of the material, which is widely used in tires manufacture. Thanks to its control over the polymerization process and its living character, anionic polymerization enables to obtain with precision a wide variety of polymer architectures, thus offering the possibility of modulating the material's properties. However, the anionic polymerization of butadiene is largely dominated by the use of lithium-based initiators. With the growing demand for lithium, particularly in the energy storage sector, it is important to offer lithium-free anionic systems as a more sustainable and economically favorable alternative. It's worth mentioning that the synthesis of polybutadiene with a high content of 1,4-trans units is poorly studied in anionic polymerization. This thesis proposes calcium-based multi-metallic systems for a lithium-free chemistry on the one hand, and the controlled andliving synthesis of stereospecific 1,4-trans polybutadienes on the other. Different syntheses of calcium complexes followed by a number of novel initiating systems are proposed. In particular, calcium-lithium, calcium-magnesium, calcium-aluminium and calcium-sodium systems are studied
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Sun, Xida. "Structured Silicon Macropore as Anode in Lithium Ion Batteries". Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1316470033.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Capitoli di libri sul tema "Lithium-free"

1

Gupta, Preeti. "Lithium Doped Lead-Free Piezoelectric Materials". In Piezoelectric Materials, 469–91. New York: Jenny Stanford Publishing, 2024. https://doi.org/10.1201/9781003598978-16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Balkanski, M., R. F. Wallis e I. Darianian. "Free Lithium Ion Conduction in Lithium Borate Glasses Doped with Li2SO4". In NATO ASI Series, 317–18. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0509-5_16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Strauss, Mark L., Luis Diaz Aldana, Mary Case e Tedd Lister. "A Strategy for Acid-Free Waste Lithium Battery Processing". In The Minerals, Metals & Materials Series, 121–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65647-8_9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Zhao, Tianyu, e Yeonuk Choi. "A Separation-Free and Purification-Free Method for Direct Production of Lithium-Rich Solution from Industrial-Grade Lithium-Ion Battery Waste". In The Minerals, Metals & Materials Series, 91–98. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-80892-0_9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Pardasani, R. T., e P. Pardasani. "Magnetic properties of lithium salt of nitroxyl free-radical carboxylic acid (4-carboxy-TEMPO)". In Magnetic Properties of Paramagnetic Compounds, 1365. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53974-3_697.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Leonard Joseph, Prettencia, Soundarrajan Elumalai, Kalaivani Raman e Raghu Subashchandrabose. "Ecofriendly Cobalt-Free, Li- and Mn-Rich Layered Materials for High-Performance Lithium-Ion Batteries". In Layered Materials, 173–207. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003508311-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Trutnev, J. A., B. A. Nadykto, N. S. Prudova e J. M. Khirny. "On the Long-Term Storage of Weapons Plutonium in Form of Criticality-Free Ceramics Containing Lithium". In Disposal of Weapon Plutonium, 91–92. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0161-2_9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Mees, E. J. Dorhout, W. H. Boer e H. A. Koomans. "Estimation of Free Water Back Diffusion during Water Diuresis in Man Using Lithium Clearance and Furosemide Effect: Some Unresolved Questions". In Diuretics: Basic, Pharmacological, and Clinical Aspects, 79–81. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-2067-8_16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Riexinger, Günther, David J. Regina, Christoph Haar, Tobias Schmid-Schirling, Inga Landwehr, Michael Seib, Jonas Lips et al. "Traceability in Battery Production: Cell-Specific Marker-Free Identification of Electrode Segments". In Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains, 344–53. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27933-1_32.

Testo completo
Abstract (sommario):
AbstractDigitalization in battery production, as well as the increase and stabilization of product quality of lithium-ion battery cells, require the elimination of information gaps between processes to enable the traceability of components and process steps to the finished product. In lithium-ion battery cell manufacturing, using a traceability system is considered a promising approach to reduce scrap rates and enable more efficient production. Today, traceability is possible from the assembled cell onwards. However, with a view to the new EU battery regulation, complete traceability down to the material needs to be ensured. One of the challenges in this context is to ensure both, traceability in continuous electrode production and cell-specific identification within the production chain. This paper presents an approach for identifying individual electrode segments without identification markers, using the individual microstructure of the electrode surface. The Fraunhofer Institute for Manufacturing Engineering and Automation IPA and the Fraunhofer Institute for Physical Measurement Techniques IPM are further developing and testing an identification technique known as Track & Trace Fingerprint. This technique is dedicated to serialization within battery production as part of the joint project DigiBattPro 4.0 and to be implemented at the Center for Digitalized Battery Cell Manufacturing (ZDB) of Fraunhofer IPA.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Olivares Bahamondes, Ignacio Enrique, e Patrick Carrazana. "Lithium Doppler-free absorption spectroscopy". In Techniques for Lithium Isotope Separation, Laser Cooling, and Scattering, 6–1. IOP Publishing, 2022. http://dx.doi.org/10.1088/978-0-7503-3839-4ch6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Lithium-free"

1

Kang, Shuting, Di jia, Xuanyi Yu, Feng Gao, Fang Bo, Guoquan Zhang e Jingjun Xu. "High quality lithium niobate Euler racetrack resonators". In CLEO: Science and Innovations, STh3F.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth3f.7.

Testo completo
Abstract (sommario):
We demonstrated Euler racetrack resonators on X-cut thin film lithium niobate with intrinsic quality factors up to 5.53 million and free spectrum range standard deviation 33 times lower than the circular racetrack microcavity.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Dagli, Sahil, Halleh Balch, Hamish Carr Delgado, Sajjad Abdollahramezani, Jefferson Dixon, Varun Dolia, Jung-Hwan Song et al. "Free-space electro-optic modulators using high quality factor silicon on lithium niobate metasurfaces". In CLEO: Fundamental Science, FM4O.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm4o.5.

Testo completo
Abstract (sommario):
We present electro-optically tunable high quality factor metasurfaces using a silicon on lithium niobate platform. Using electrically biased guided mode resonant nanoantennas, our metasurface modulates the amplitude of telecom light in the >100 MHz range.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Wang, Yanqun, Xiaoyue Liu, Chunfan Zhu, Lin Liu, Fujing Huang, Yuntao Zhu, Mengwen Chen et al. "Free-phase-matching and tunable-gain phase-sensitive amplification based on thin-film lithium niobate". In CLEO: Applications and Technology, JW2A.215. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.215.

Testo completo
Abstract (sommario):
Based on substrate-removed thin-film lithium niobate, we demonstrate a tunable phase-sensitive amplification, which can achieve an extinction ratio of 30.6 dB and a maximum gain of 23 dB in wavelength ranges of 1530-1550 nm.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Li, Shijia, Shuxian Wu, Zonglin Wu, Hangyu Qian, Feihong Bao e Guo-Min Yang. "Spurious-Free SAW Resonators Using Lithium Tantalate on Silicon Carbide Substrate with Rhomboidal Apodization IDT". In 2024 IEEE 10th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), 1–4. IEEE, 2024. https://doi.org/10.1109/mape62875.2024.10813674.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Billault, V., G. Feugnet, J. Bourerionnet, Karol Obara, Homa Zarebidaki, Hamed Sattari e A. Brignon. "Coherent combiner for multimode free space optical communication receiver with a thin film lithium niobate integrated circuit". In 2024 IEEE Photonics Conference (IPC), 1–2. IEEE, 2024. https://doi.org/10.1109/ipc60965.2024.10799757.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Didier, Pierre, Prakhar Jain, Gaoyuan Li, Oliver Pitz, Olivier Spitz, Angela Vasanelli, Carlo Sirtori e Rachel Grange. "Mid-infrared free-space communication: state of the art and future pathways using lithium niobate on sapphire". In Quantum Sensing and Nano Electronics and Photonics XXI, a cura di Manijeh Razeghi, Giti A. Khodaparast e Miriam S. Vitiello, 15. SPIE, 2025. https://doi.org/10.1117/12.3052507.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Huang, Ziyue, Lujuan Dang e Lei Xing. "E2F2: End-to-End Feature-Free Network for Lithium-Ion Battery State of Health Prediction". In 2024 6th International Conference on Electronic Engineering and Informatics (EEI), 362–66. IEEE, 2024. http://dx.doi.org/10.1109/eei63073.2024.10696695.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Schollhammer, Jean, Mohammad Amin Baghban e Katia Gallo. "Birefringence-free lithium niobate waveguides". In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087171.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Rajabzadeh, Taha, Christopher J. Sarabalis, Okan Atalar e Amir H. Safavi-Naeini. "Photonics-to-Free-Space Interface in Lithium Niobate-on-Sapphire". In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.stu4j.6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Geiss, R., S. Diziain, R. Iliew, C. Etrich, F. Schrempel, F. Lederer, T. Pertsch e E. B. Kley. "Transmission Properties of a Free-standing Lithium Niobate Photonic Crystal Waveguide". In CLEO: Science and Innovations. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cfi4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Lithium-free"

1

Kumta, Prashant, Moni Datta e Oleg Velikokhatnyi. Engineering Approaches to Dendrite free Lithium Anodes. Office of Scientific and Technical Information (OSTI), marzo 2021. http://dx.doi.org/10.2172/1772243.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Wang, Chunsheng, Yijie Liu e Zeyi Wang. Lithium Dendrite-Free Li7N2I-LiOH Solid Electrolytes for High Energy Lithium Batteries. Office of Scientific and Technical Information (OSTI), maggio 2024. https://doi.org/10.2172/2479519.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Steven Wallace. Gamma-Free Neutron Detector Based upon Lithium Phosphate Nanoparticles. Office of Scientific and Technical Information (OSTI), agosto 2007. http://dx.doi.org/10.2172/913098.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

R.A. Stubbers, G.H. Miley, M. Nieto, W. Olczak, D.N. Ruzic e A. Hassanein. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium. Office of Scientific and Technical Information (OSTI), dicembre 2004. http://dx.doi.org/10.2172/835088.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Robert Filler, Zhong Shi and Braja Mandal. Highly Conductive Solvent-Free Polymer Electrolytes for Lithium Rechargeable Batteries. Office of Scientific and Technical Information (OSTI), ottobre 2004. http://dx.doi.org/10.2172/833727.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Varying the Pre-discharge Lithium Wall Coatings to Alter the Characteristics of the ELM-free H-mode Pedestal in NSTX. Office of Scientific and Technical Information (OSTI), giugno 2012. http://dx.doi.org/10.2172/1057482.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia