Articoli di riviste sul tema "Machine Learning, Bioinformatics, Rare Diseases, Healthcare"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-28 articoli di riviste per l'attività di ricerca sul tema "Machine Learning, Bioinformatics, Rare Diseases, Healthcare".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Hauschild, Anne-Christin, Marta Lemanczyk, Julian Matschinske, Tobias Frisch, Olga Zolotareva, Andreas Holzinger, Jan Baumbach e Dominik Heider. "Federated Random Forests can improve local performance of predictive models for various healthcare applications". Bioinformatics 38, n. 8 (9 febbraio 2022): 2278–86. http://dx.doi.org/10.1093/bioinformatics/btac065.
Testo completoR, Pooja M. "Application of Learning Approaches in Healthcare". International Journal of Advanced Medical Sciences and Technology 1, n. 3 (10 giugno 2021): 1–2. http://dx.doi.org/10.35940/ijamst.b3005.061321.
Testo completoM R, Pooja. "Application of Learning Approaches in Healthcare". International Journal of Advanced Medical Sciences and Technology 1, n. 3 (10 giugno 2021): 1–2. http://dx.doi.org/10.54105/ijamst.b3005.061321.
Testo completoSetty, Samarth Thonta, Marie-Pier Scott-Boyer, Tania Cuppens e Arnaud Droit. "New Developments and Possibilities in Reanalysis and Reinterpretation of Whole Exome Sequencing Datasets for Unsolved Rare Diseases Using Machine Learning Approaches". International Journal of Molecular Sciences 23, n. 12 (18 giugno 2022): 6792. http://dx.doi.org/10.3390/ijms23126792.
Testo completoYao, Junfeng, Wen Sun, Zhongquan Jian, Qingqiang Wu e Xiaoli Wang. "Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction". Bioinformatics 38, n. 8 (17 febbraio 2022): 2315–22. http://dx.doi.org/10.1093/bioinformatics/btac094.
Testo completoKothari, Sonali, Shwetambari Chiwhane, Shruti Jain e Malti Baghel. "Cancerous brain tumor detection using hybrid deep learning framework". Indonesian Journal of Electrical Engineering and Computer Science 26, n. 3 (1 giugno 2022): 1651. http://dx.doi.org/10.11591/ijeecs.v26.i3.pp1651-1661.
Testo completoPrakash, PKS, Srinivas Chilukuri, Nikhil Ranade e Shankar Viswanathan. "RareBERT: Transformer Architecture for Rare Disease Patient Identification using Administrative Claims". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 1 (18 maggio 2021): 453–60. http://dx.doi.org/10.1609/aaai.v35i1.16122.
Testo completoAhmad, Iftikhar, Muhammad Javed Iqbal e Mohammad Basheri. "Biological Data Classification and Analysis Using Convolutional Neural Network". Journal of Medical Imaging and Health Informatics 10, n. 10 (1 ottobre 2020): 2459–65. http://dx.doi.org/10.1166/jmihi.2020.3179.
Testo completoAhmad, Iftikhar, Muhammad Javed Iqbal e Mohammad Basheri. "Biological Data Classification and Analysis Using Convolutional Neural Network". Journal of Medical Imaging and Health Informatics 10, n. 10 (1 ottobre 2020): 2459–65. http://dx.doi.org/10.1166/jmihi.2020.31792459.
Testo completoCesario, Alfredo, Marika D’Oria, Riccardo Calvani, Anna Picca, Antonella Pietragalla, Domenica Lorusso, Gennaro Daniele et al. "The Role of Artificial Intelligence in Managing Multimorbidity and Cancer". Journal of Personalized Medicine 11, n. 4 (19 aprile 2021): 314. http://dx.doi.org/10.3390/jpm11040314.
Testo completoYaqoob, Abrar, Rabia Musheer Aziz, Navneet Kumar Verma, Praveen Lalwani, Akshara Makrariya e Pavan Kumar. "A Review on Nature-Inspired Algorithms for Cancer Disease Prediction and Classification". Mathematics 11, n. 5 (21 febbraio 2023): 1081. http://dx.doi.org/10.3390/math11051081.
Testo completoBattineni, Gopi, Mohmmad Amran Hossain, Nalini Chintalapudi e Francesco Amenta. "A Survey on the Role of Artificial Intelligence in Biobanking Studies: A Systematic Review". Diagnostics 12, n. 5 (9 maggio 2022): 1179. http://dx.doi.org/10.3390/diagnostics12051179.
Testo completoRevel-Vilk, Shoshana, Gabriel Chodick, Varda Shalev e Noga Gadir. "Study Design: Development of an Advanced Machine Learning Algorithm for the Early Diagnosis of Gaucher Disease Using Real-World Data". Blood 136, Supplement 1 (5 novembre 2020): 13–14. http://dx.doi.org/10.1182/blood-2020-134414.
Testo completoTalwar, Vineet, Kundan Singh Chufal e Srujana Joga. "Artificial Intelligence: A New Tool in Oncologist's Armamentarium". Indian Journal of Medical and Paediatric Oncology 42, n. 06 (dicembre 2021): 511–17. http://dx.doi.org/10.1055/s-0041-1735577.
Testo completoKujawski, Stephanie, Boshu Ru, Amar K. Das, Nelson L. Afanador, richard baumgartner, Zhiwen Liu, Shuang Lu et al. "1344. Predicting Measles Outbreaks in the United States: Application of Different Modeling Approaches". Open Forum Infectious Diseases 8, Supplement_1 (1 novembre 2021): S759. http://dx.doi.org/10.1093/ofid/ofab466.1536.
Testo completoAkushevich, Igor, Carl V. Hill e Heather E. Whitson. "LEVERAGING ANALYTIC METHODS TO EXPAND OPPORTUNITIES IN AGING-RELATED HEALTH DISPARITIES RESEARCH". Innovation in Aging 3, Supplement_1 (novembre 2019): S426. http://dx.doi.org/10.1093/geroni/igz038.1592.
Testo completoDutt, Yogesh, Ruby Dhiman, Tanya Singh, Arpana Vibhuti, Archana Gupta, Ramendra Pati Pandey, V. Samuel Raj, Chung-Ming Chang e Anjali Priyadarshini. "The Association between Biofilm Formation and Antimicrobial Resistance with Possible Ingenious Bio-Remedial Approaches". Antibiotics 11, n. 7 (11 luglio 2022): 930. http://dx.doi.org/10.3390/antibiotics11070930.
Testo completoMaurits, M., T. Huizinga, M. Reinders, S. Raychaudhuri, E. Karlson, E. Van den Akker e R. Knevel. "FRI0585 HIGH-THROUGHPUT METHODOLOGY FOR EMR-BASED IDENTIFICATION OF CLINICAL SUB-PHENOTYPES IN COMPLEX PATIENT POPULATIONS". Annals of the Rheumatic Diseases 79, Suppl 1 (giugno 2020): 897.2–897. http://dx.doi.org/10.1136/annrheumdis-2020-eular.3489.
Testo completoShang, Aijing, Imi Faghmous, Dan Drozd e Pablo Katz. "COMMODORE Cohort: A Novel, Real-World, Noninterventional Cohort Study Using a Patient-Centered Approach to Evaluate the Safety and Effectiveness of C5 Inhibitors in Patients with Paroxysmal Nocturnal Hemoglobinuria". Blood 136, Supplement 1 (5 novembre 2020): 31–32. http://dx.doi.org/10.1182/blood-2020-137454.
Testo completoPressl, Christina, Caroline Jiang, Joel Correa da Rosa, Maximilian Friedrich, Winrich Freiwald e Jonathan Tobin. "2093". Journal of Clinical and Translational Science 1, S1 (settembre 2017): 23. http://dx.doi.org/10.1017/cts.2017.93.
Testo completoSchaefer, Julia, Moritz Lehne, Josef Schepers, Fabian Prasser e Sylvia Thun. "The use of machine learning in rare diseases: a scoping review". Orphanet Journal of Rare Diseases 15, n. 1 (9 giugno 2020). http://dx.doi.org/10.1186/s13023-020-01424-6.
Testo completoLabory, Justine, Gwendal Le Bideau, David Pratella, Jean-Elisée Yao, Samira Ait-El-Mkadem Saadi, Sylvie Bannwarth, Loubna El-Hami, Véronique Paquis-Fluckinger e Silvia Bottini. "ABEILLE: a novel method for ABerrant Expression Identification empLoying machine Learning from RNA-sequencing data". Bioinformatics, 5 settembre 2022. http://dx.doi.org/10.1093/bioinformatics/btac603.
Testo completoPati, Sarthak, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-Han Wang, G. Anthony Reina, Patrick Foley et al. "Federated learning enables big data for rare cancer boundary detection". Nature Communications 13, n. 1 (5 dicembre 2022). http://dx.doi.org/10.1038/s41467-022-33407-5.
Testo completoFernandes, Felipe, Ingridy Barbalho, Daniele Barros, Ricardo Valentim, César Teixeira, Jorge Henriques, Paulo Gil e Mário Dourado Júnior. "Biomedical signals and machine learning in amyotrophic lateral sclerosis: a systematic review". BioMedical Engineering OnLine 20, n. 1 (15 giugno 2021). http://dx.doi.org/10.1186/s12938-021-00896-2.
Testo completoTisdale, Ainslie, Christine M. Cutillo, Ramaa Nathan, Pierantonio Russo, Bryan Laraway, Melissa Haendel, Douglas Nowak et al. "The IDeaS initiative: pilot study to assess the impact of rare diseases on patients and healthcare systems". Orphanet Journal of Rare Diseases 16, n. 1 (22 ottobre 2021). http://dx.doi.org/10.1186/s13023-021-02061-3.
Testo completoHallowell, Nina, Shirlene Badger, Aurelia Sauerbrei, Christoffer Nellåker e Angeliki Kerasidou. "“I don’t think people are ready to trust these algorithms at face value”: trust and the use of machine learning algorithms in the diagnosis of rare disease". BMC Medical Ethics 23, n. 1 (16 novembre 2022). http://dx.doi.org/10.1186/s12910-022-00842-4.
Testo completoDros, Jesper T., Isabelle Bos, Frank C. Bennis, Sytske Wiegersma, John Paget, Chiara Seghieri, Jaime Barrio Cortés e Robert A. Verheij. "Detection of primary Sjögren’s syndrome in primary care: developing a classification model with the use of routine healthcare data and machine learning". BMC Primary Care 23, n. 1 (9 agosto 2022). http://dx.doi.org/10.1186/s12875-022-01804-w.
Testo completoJamian, Lia, Lee Wheless, Leslie J. Crofford e April Barnado. "Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record". Arthritis Research & Therapy 21, n. 1 (dicembre 2019). http://dx.doi.org/10.1186/s13075-019-2092-7.
Testo completo