Articoli di riviste sul tema "Mandelbrot sets"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Mandelbrot sets".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
LIU, XIANG-DONG, ZHI-JIE LI, XUE-YE ANG, and JIN-HAI ZHANG. "MANDELBROT AND JULIA SETS OF ONE-PARAMETER RATIONAL FUNCTION FAMILIES ASSOCIATED WITH NEWTON'S METHOD." Fractals 18, no. 02 (June 2010): 255–63. http://dx.doi.org/10.1142/s0218348x10004841.
Testo completoMu, Beining. "Fuzzy Julia Sets and Fuzzy Superior Julia Sets." Highlights in Science, Engineering and Technology 72 (December 15, 2023): 375–80. http://dx.doi.org/10.54097/5c5hp748.
Testo completoJha, Ketan, and Mamta Rani. "Control of Dynamic Noise in Transcendental Julia and Mandelbrot Sets by Superior Iteration Method." International Journal of Natural Computing Research 7, no. 2 (April 2018): 48–59. http://dx.doi.org/10.4018/ijncr.2018040104.
Testo completoDanca, Marius-F. "Mandelbrot Set as a Particular Julia Set of Fractional Order, Equipotential Lines and External Rays of Mandelbrot and Julia Sets of Fractional Order." Fractal and Fractional 8, no. 1 (January 19, 2024): 69. http://dx.doi.org/10.3390/fractalfract8010069.
Testo completoTassaddiq, Asifa, Muhammad Tanveer, Muhammad Azhar, Waqas Nazeer, and Sania Qureshi. "A Four Step Feedback Iteration and Its Applications in Fractals." Fractal and Fractional 6, no. 11 (November 9, 2022): 662. http://dx.doi.org/10.3390/fractalfract6110662.
Testo completoYan, De Jun, Xiao Dan Wei, Hong Peng Zhang, Nan Jiang, and Xiang Dong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated from Complex Non-Analytic Iteration Fm(z)=z¯m+c." Applied Mechanics and Materials 347-350 (August 2013): 3019–23. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.3019.
Testo completoKOZMA, ROBERT T., and ROBERT L. DEVANEY. "Julia sets converging to filled quadratic Julia sets." Ergodic Theory and Dynamical Systems 34, no. 1 (August 21, 2012): 171–84. http://dx.doi.org/10.1017/etds.2012.115.
Testo completoAl-Salami, Hassanein Q. "Some Properties of the Mandelbrot Sets M(Q_α)". JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 31, № 2 (29 червня 2023): 263–69. http://dx.doi.org/10.29196/jubpas.v31i2.4683.
Testo completoSekovanov, Valeriy S., Larisa B. Rybina, and Kseniya Yu Strunkina. "The study of the frames of Mandelbrot sets of polynomials of the second degree as a means of developing the originality of students' thinking." Vestnik Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics, no. 4 (2019): 193–99. http://dx.doi.org/10.34216/2073-1426-2019-25-4-193-199.
Testo completoWang, Feng Ying, Li Ming Du, and Zi Yang Han. "The Construction for Generalized Mandelbrot Sets of the Frieze Group." Advanced Materials Research 756-759 (September 2013): 2562–66. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.2562.
Testo completoKauko, Virpi. "Shadow trees of Mandelbrot sets." Fundamenta Mathematicae 180, no. 1 (2003): 35–87. http://dx.doi.org/10.4064/fm180-1-4.
Testo completoSun, Y. Y., and X. Y. Wang. "Noise-perturbed quaternionic Mandelbrot sets." International Journal of Computer Mathematics 86, no. 12 (December 2009): 2008–28. http://dx.doi.org/10.1080/00207160903131228.
Testo completoWang, Xingyuan, Zhen Wang, Yahui Lang, and Zhenfeng Zhang. "Noise perturbed generalized Mandelbrot sets." Journal of Mathematical Analysis and Applications 347, no. 1 (November 2008): 179–87. http://dx.doi.org/10.1016/j.jmaa.2008.04.032.
Testo completoJha, Ketan, and Mamta Rani. "Estimation of Dynamic Noise in Mandelbrot Map." International Journal of Artificial Life Research 7, no. 2 (July 2017): 1–20. http://dx.doi.org/10.4018/ijalr.2017070101.
Testo completoCHEN, YI-CHIUAN, TOMOKI KAWAHIRA, HUA-LUN LI, and JUAN-MING YUAN. "FAMILY OF INVARIANT CANTOR SETS AS ORBITS OF DIFFERENTIAL EQUATIONS II: JULIA SETS." International Journal of Bifurcation and Chaos 21, no. 01 (January 2011): 77–99. http://dx.doi.org/10.1142/s0218127411028295.
Testo completoAshish, Mamta Rani, and Renu Chugh. "Julia sets and Mandelbrot sets in Noor orbit." Applied Mathematics and Computation 228 (February 2014): 615–31. http://dx.doi.org/10.1016/j.amc.2013.11.077.
Testo completoDOLOTIN, V., and A. MOROZOV. "ON THE SHAPES OF ELEMENTARY DOMAINS OR WHY MANDELBROT SET IS MADE FROM ALMOST IDEAL CIRCLES?" International Journal of Modern Physics A 23, no. 22 (September 10, 2008): 3613–84. http://dx.doi.org/10.1142/s0217751x08040330.
Testo completoMork, Leah K., and Darin J. Ulness. "Visualization of Mandelbrot and Julia Sets of Möbius Transformations." Fractal and Fractional 5, no. 3 (July 17, 2021): 73. http://dx.doi.org/10.3390/fractalfract5030073.
Testo completoWANG, XING-YUAN, QING-YONG LIANG, and JUAN MENG. "CHAOS AND FRACTALS IN C–K MAP." International Journal of Modern Physics C 19, no. 09 (September 2008): 1389–409. http://dx.doi.org/10.1142/s0129183108012935.
Testo completoLIAW, SY-SANG. "FIND THE MANDELBROT-LIKE SETS IN ANY MAPPING." Fractals 10, no. 02 (June 2002): 137–46. http://dx.doi.org/10.1142/s0218348x02001282.
Testo completoYAN, DEJUN, XIANGDONG LIU, and WEIYONG ZHU. "A STUDY OF MANDELBROT AND JULIA SETS GENERATED FROM A GENERAL COMPLEX CUBIC ITERATION." Fractals 07, no. 04 (December 1999): 433–37. http://dx.doi.org/10.1142/s0218348x99000438.
Testo completoBUCHANAN, WALTER, JAGANNATHAN GOMATAM, and BONNIE STEVES. "GENERALIZED MANDELBROT SETS FOR MEROMORPHIC COMPLEX AND QUATERNIONIC MAPS." International Journal of Bifurcation and Chaos 12, no. 08 (August 2002): 1755–77. http://dx.doi.org/10.1142/s0218127402005443.
Testo completoAbbas, Mujahid, Hira Iqbal, and Manuel De la Sen. "Generation of Julia and Mandelbrot Sets via Fixed Points." Symmetry 12, no. 1 (January 2, 2020): 86. http://dx.doi.org/10.3390/sym12010086.
Testo completoBandt, Christoph, and Nguyen Viet Hung. "Fractaln-gons and their Mandelbrot sets." Nonlinearity 21, no. 11 (October 10, 2008): 2653–70. http://dx.doi.org/10.1088/0951-7715/21/11/009.
Testo completoSHIAH, AICHYUN, KIM-KHOON ONG, and ZDZISLAW E. MUSIELAK. "FRACTAL IMAGES OF GENERALIZED MANDELBROT SETS." Fractals 02, no. 01 (March 1994): 111–21. http://dx.doi.org/10.1142/s0218348x94000107.
Testo completoPickover, Clifford A. "A note on inverted mandelbrot sets." Visual Computer 6, no. 4 (July 1990): 227–29. http://dx.doi.org/10.1007/bf02341047.
Testo completoZhang, Yongping, and Weihua Sun. "Synchronization and coupling of Mandelbrot sets." Nonlinear Dynamics 64, no. 1-2 (October 9, 2010): 59–63. http://dx.doi.org/10.1007/s11071-010-9845-9.
Testo completoWang, Xing-yuan, Pei-jun Chang, and Ni-ni Gu. "Additive perturbed generalized Mandelbrot–Julia sets." Applied Mathematics and Computation 189, no. 1 (June 2007): 754–65. http://dx.doi.org/10.1016/j.amc.2006.11.137.
Testo completoSmirnova, Elena Sa, Valery S. Sekovanov, Larisa B. Rybina, and Roman Al Shchepin. "Performing a multi-stage mathematical information task "Framing the Mandelbrot set of families of polynomials of the third degree and remarkable curves"." Vestnik of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics 30, no. 1 (June 28, 2024): 63–72. http://dx.doi.org/10.34216/2073-1426-2024-30-1-63-72.
Testo completoZou, Cui, Abdul Aziz Shahid, Asifa Tassaddiq, Arshad Khan, and Maqbool Ahmad. "Mandelbrot Sets and Julia Sets in Picard-Mann Orbit." IEEE Access 8 (2020): 64411–21. http://dx.doi.org/10.1109/access.2020.2984689.
Testo completoFarris, Salma M. "Generalized Mandelbrot Sets of a Family of Polynomials P n z = z n + z + c ; n ≥ 2." International Journal of Mathematics and Mathematical Sciences 2022 (February 22, 2022): 1–9. http://dx.doi.org/10.1155/2022/4510088.
Testo completoWang, Feng Ying, Li Ming Du, and Zi Yang Han. "Two Partitioning Algorithms for Generating of M Sets of the Frieze Group." Applied Mechanics and Materials 336-338 (July 2013): 2238–41. http://dx.doi.org/10.4028/www.scientific.net/amm.336-338.2238.
Testo completoCai, Zong Wen, and Artde D. Kin Tak Lam. "A Study on Mandelbrot Sets to Generate Visual Aesthetic Fractal Patterns." Applied Mechanics and Materials 311 (February 2013): 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.311.111.
Testo completoWANG, XINGYUAN, QINGYONG LIANG, and JUAN MENG. "DYNAMIC ANALYSIS OF THE CAROTID–KUNDALINI MAP." Modern Physics Letters B 22, no. 04 (February 10, 2008): 243–62. http://dx.doi.org/10.1142/s0217984908014717.
Testo completoKang, Shinmin, Arif Rafiq, Abdul Latif, Abdul Shahid, and Faisal Alif. "Fractals through modified iteration scheme." Filomat 30, no. 11 (2016): 3033–46. http://dx.doi.org/10.2298/fil1611033k.
Testo completoPEHERSTORFER, FRANZ, and CHRISTOPH STROH. "JULIA AND MANDELBROT SETS OF CHEBYSHEV FAMILIES." International Journal of Bifurcation and Chaos 11, no. 09 (September 2001): 2463–81. http://dx.doi.org/10.1142/s0218127401003577.
Testo completoMurali, Arunachalam, and Krishnan Muthunagai. "Generation of Julia and Mandelbrot fractals for a generalized rational type mapping via viscosity approximation type iterative method extended with $ s $-convexity." AIMS Mathematics 9, no. 8 (2024): 20221–44. http://dx.doi.org/10.3934/math.2024985.
Testo completoBlankers, Vance, Tristan Rendfrey, Aaron Shukert, and Patrick Shipman. "Julia and Mandelbrot Sets for Dynamics over the Hyperbolic Numbers." Fractal and Fractional 3, no. 1 (February 20, 2019): 6. http://dx.doi.org/10.3390/fractalfract3010006.
Testo completoCheng, Jin, and Jian-rong Tan. "Generalization of 3D Mandelbrot and Julia sets." Journal of Zhejiang University-SCIENCE A 8, no. 1 (January 2007): 134–41. http://dx.doi.org/10.1631/jzus.2007.a0134.
Testo completoQi, Hengxiao, Muhammad Tanveer, Muhammad Shoaib Saleem, and Yuming Chu. "Anti Mandelbrot Sets via Jungck-M Iteration." IEEE Access 8 (2020): 194663–75. http://dx.doi.org/10.1109/access.2020.3033733.
Testo completoÁlvarez, G., M. Romera, G. Pastor, and F. Montoya. "Determination of Mandelbrot Sets Hyperbolic Component Centres." Chaos, Solitons & Fractals 9, no. 12 (December 1998): 1997–2005. http://dx.doi.org/10.1016/s0960-0779(98)00046-0.
Testo completoBeck, Christian. "Physical meaning for Mandelbrot and Julia sets." Physica D: Nonlinear Phenomena 125, no. 3-4 (January 1999): 171–82. http://dx.doi.org/10.1016/s0167-2789(98)00243-7.
Testo completoAgarwal, Rashi, and Vishal Agarwal. "Dynamic noise perturbed generalized superior Mandelbrot sets." Nonlinear Dynamics 67, no. 3 (July 13, 2011): 1883–91. http://dx.doi.org/10.1007/s11071-011-0115-2.
Testo completoZhang, Yong-Ping. "Feedback control and synchronization of Mandelbrot sets." Chinese Physics B 22, no. 1 (January 2013): 010502. http://dx.doi.org/10.1088/1674-1056/22/1/010502.
Testo completoEndler, Antonio, and Paulo C. Rech. "From Mandelbrot-like sets to Arnold tongues." Applied Mathematics and Computation 222 (October 2013): 559–63. http://dx.doi.org/10.1016/j.amc.2013.08.001.
Testo completoRomera, M., G. Pastor, A. B. Orue, D. Arroyo, and F. Montoya. "Coupling Patterns of External Arguments in the Multiple-Spiral Medallions of the Mandelbrot Set." Discrete Dynamics in Nature and Society 2009 (2009): 1–14. http://dx.doi.org/10.1155/2009/135637.
Testo completoTassaddiq, Asifa, Amna Kalsoom, Maliha Rashid, Kainat Sehr, and Dalal Khalid Almutairi. "Generating Geometric Patterns Using Complex Polynomials and Iterative Schemes." Axioms 13, no. 3 (March 18, 2024): 204. http://dx.doi.org/10.3390/axioms13030204.
Testo completoWANG, XING-YUAN, and LI-NA GU. "RESEARCH FRACTAL STRUCTURES OF GENERALIZED M-J SETS USING THREE ALGORITHMS." Fractals 16, no. 01 (March 2008): 79–88. http://dx.doi.org/10.1142/s0218348x08003764.
Testo completoMork, L. K., Trenton Vogt, Keith Sullivan, Drew Rutherford, and Darin J. Ulness. "Exploration of Filled-In Julia Sets Arising from Centered Polygonal Lacunary Functions." Fractal and Fractional 3, no. 3 (July 12, 2019): 42. http://dx.doi.org/10.3390/fractalfract3030042.
Testo completoROCHON, DOMINIC. "A GENERALIZED MANDELBROT SET FOR BICOMPLEX NUMBERS." Fractals 08, no. 04 (December 2000): 355–68. http://dx.doi.org/10.1142/s0218348x0000041x.
Testo completo