Segui questo link per vedere altri tipi di pubblicazioni sul tema: Mathesius Mathesius.

Tesi sul tema "Mathesius Mathesius"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-24 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Mathesius Mathesius".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.

1

Mathesius, Jörn [Verfasser]. "Wertmanagement durch equity carve-out : eine empirische Studie / Jörn Mathesius". Flensburg : Zentrale Hochschulbibliothek Flensburg, 2003. http://d-nb.info/1019133694/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Sardeiro, Leandro de Araujo. "A significação da Mathesis Universalis em Descartes". [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/281919.

Testo completo
Abstract (sommario):
Orientador: Eneias Junior Forlin
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas
Made available in DSpace on 2018-08-12T06:27:07Z (GMT). No. of bitstreams: 1 Sardeiro_LeandrodeAraujo_M.pdf: 603403 bytes, checksum: 3d1c7910596bd5fd3fdf0b9074cb77b2 (MD5) Previous issue date: 2008
Resumo: Desenvolveu-se o problema do conhecimento humano na constituição das Regulae ad directionem ingenii (1619-1628) no que se refere à significação da Mathesis universalis. Pretendeu-se defender uma compreensão da Mathesis universalis enquanto ciência do conhecimento em geral - diversa, portanto, das Mathematicae - mostrando a sua aplicabilidade aos diversos ramos do conhecimento por via da análise das naturezas simples. Defendeu-se que a Mathesis universalis não se esgota em uma teoria geral da quantidade por ser delineada por naturezas simples que não expressam apenas quantidades, mas todos os objetos passíveis de conhecimento, inclusive metafísicos. A universalidade da Mathesis universalis estaria expressa pela sua aplicabilidade indefinida, porque potencialmente presente em toda e qualquer descrição e problematização das naturezas simples. Por essa razão, sustentou-se que as naturezas simples não designam apenas coisas - passíveis de tratamento quantitativo -, mas se referem igualmente a proposições, cujo escopo abrange, entre outras coisas, objetos comuns a diversos saberes. A Mathesis universalis seria uma metaciência, a ocupar-se de metaobjetos. Nesse sentido, recuperou-se a noção de ingenium no intuito de mostrar que, por estar ligada à problemática mais científica das Regulae, tal noção resignara-se a uma epistemologia, sem constituir uma metafísica, fato este que não impediria a posterior aplicação da Mathesis universalis àquele campo do saber. Toda essa discussão pressupôs como válida a apresentação material do manuscrito de Hannover, encontrado por Foucher de Careil na primeira metade do século XIX, que apresenta a discussão acerca da Mathesis universalis desenvolvida na regra IV na forma de apêndice, o que nos fez levantar o questionamento acerca da "significação" da Mathesis universalis.
Abstract: We have dealt with the problem of human knowledge in the constitution of the Regulae ad directionem ingenii (1619-1628), as it is concerned with the signification of the Mathesis universalis. We intended to defend a comprehension of the Mathesis universalis as science of knowledge in general - different, therefore, from the Mathematicae - by showing its applicability in the diverse fields of knowledge through the analysis of the simple natures. Thus, we claim that the Mathesis universalis is not fully apprehended when it is conceived of as a general theory of quantity, for it is determined by simple natures, which do not only express quantities, but all knowledgeable objects, including the metaphysical ones. The universality of the Mathesis universalis would then be expressed in its indefinite applicability, for it is potentially present in each and every description and problematization of the simple natures. That is why, for example, we claim that the simple natures do not only express things which are dealt with quantitatively, but equally refer to propositions, in whose scope we find, among others, objects that are common to a wide range of forms of knowledge. The Mathesis universalis would then be a metascience, one that should deal with metaobjects. Thus, we have brought forth the notion of ingenium so as to show that, since it was then connected to the Regulae's more scientifical problematics, it then resignated itself to an epistemology that did not go so far as to constitute a metaphysics; what, however, would not constitute impediment to a future application of the Mathesis universalis to that field of knowledge, to wit, metaphysics. All of this discussion presupposes as valid the material presentation of the Hannover manuscript of the Regulae, found by Foucher de Careil in the first half of the XIX century, which relegates the discussion related to the mathesis universalis developed in rule IV to an appendix - what made us raise this questioning concerning the "signification" of the Mathesis universalis.
Mestrado
Mestre em Filosofia
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Rabouin, David. "Mathesis universalis : l'idée de "mathématique universelle" d'Aristote à Descartes /". Paris : Presses universitaires de France, 2009. http://catalogue.bnf.fr/ark:/12148/cb41441082j.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Gallotta, Francesco. "Mathesis Universalis e "modernità" nel pensiero di Martin Heidegger". Thesis, Sorbonne université, 2020. http://accesdistant.sorbonne-universite.fr/login?url=http://theses.paris-sorbonne.fr/2020SORUL043.pdf.

Testo completo
Abstract (sommario):
Ce travail de thèse a pour objet la réflexion de Heidegger sur la modernité dans les années ’30 et ’40, par rapport au concept de mathesis. Le premier chapitre est consacré à l’analyse de la conception heideggérienne de l’historicité, afin de situer la réflexion sur la modernité dans le contexte spéculatif de la « pensée de l’histoire de l’être ». Le deuxième chapitre porte sur la notion de mathesis, alors que le troisième développe la critique heideggérienne à la conception mathématique du « sujet ». Dans notre travail nous avons principalement analysé les « notes » issues des volumes récemment parus des Cahiers noirs, notamment les Réflexions (Überlegungen) rédigées du 1931 au 1939. Nous avons pris en tant que question directrice l’opposition entre le « projet mathématique » et un projet non mathématique, que Heidegger nomme « projet jeté ». Cette opposition nous a permis de montrer que le projet moderne, en tant que mathématique, se fonde sur la méconnaissance de l’« être-jeté », alors que le but propre du projet en tant que jeté est justement le saisissement de la Geworfenheit. L’idée du projet jeté se développe dans ce que Heidegger appelle explicitement le « projet de l’être en tant que temps », c’est-à-dire la conception originale dans laquelle l’être est pensé dans le déploiement de son essence, c’est-à-dire comme ce qu’atteint sa vérité (Wahrheit des Seyns). C’est la raison pour laquelle dans le contexte des années ’30 e ’40 Heidegger appelle le Dasein aussi comme la « fondation de la vérité de l’être ». Le Dasein même ne peut être conçu en tant que fondement immédiat de la connaissance, à voir en tant que subjectum
The present work aims at studying the meditation of Heidegger about modernity in 1930s and 1940s, related to modern concept of mathesis. The primary goal of my work is a systematic analysis of «history of being» to provide a background understanding for Heidegger’s philosophical critique of modernity. Therefore, the first part of this study is focused on Heidegger’s idea of history. The discussion of concept of mathesis and the modern mathematical concept of subjectum compose the second part. In this work I have examined mainly the Heidegger ’s Nachlass, especially the first series of Heidegger’s so-called Black Notebooks, from 1931 to 1941. We have examined the meditation of Heidegger about modernity interpreted through the prism of the antagonism between modern mathematical project and non-mathematical projection called by Heidegger thrown projection. Through to some historical analysis (a comparative study of Aristotle’s notion of movement and modern principle of inertia, or the critique to Heisenberg’s uncertainty principle) Heidegger highlights some of key aspects of modern science of nature, claiming that the mathematical projection is based on the misunderstanding of throwness. The idea of Sein und Zeit’s thrown projection, is developed in 1930s and 1940s as «project of being as time» and is expressed by the concept of truth of Being. Also, this work focus on the role of Dasein in connection with the history of being, as foundation of truth of Being, thank to appropriation of throwness. In contrast to this conception of Sein and Dasein, the modern concept of subjectum might be considered in the sense of mathematical and thereby non-historical concept of being
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Rabouin, David. "Mathesis Universalis : l'idée de "mathématique universelle" à l'âge classique". Paris 4, 2002. http://www.theses.fr/2002PA040176.

Testo completo
Abstract (sommario):
Cette étude se propose d'analyser le sens philosophique de la mathesis universalis, telle qu'elle s'est développée à l'âge classique. Sa méthode est généalogique. Avant de chercher la nouveauté dans les usages que proposèrent Descartes et Leibniz, elle essaye d'abord de comprendre : comment ce concept leur est parvenu, pourquoi il a pu les intéresser et ce qui distingue leur usage. A la première question, elle répond en marquant le rôle joué par la redécouverte de Proclus au XVIe siècle et la manière singulière dont cette ligne croise celle de l'algèbre nouvelle. A la seconde, elle répond, avec Leibniz, que la mathesis universalis est une "logique de l'imagination". L'imagination mathématique "fait voir", dit Descartes, les rapports entre les choses. Ainsi les mathématiques sont-elles présentées comme transparentes (perspicuae). L'usage des Classiques se distingue alors de vouloir ramener cette transparence d'un régime métaphorique à un régime mathématique
This thesis proposes to analyze the philosophical meaning of mathesis universalis as developed in the Classical Age. The method followed is genealogical. Hence, before trying to find a new mode of rationality in the uses of mathesis universalis proposed by Descartes and Leibniz, we will first attempt to understand how this concept came to them, why it was of interest to them and what distinguishes their use of it. To the first question we will respond by marking the role played by the rediscovery of Proclus in the XVIth century and the singular manner in which this line crosses that of the New Algebra. To the second we will respond, with Leibniz, that mathesis universalis is a "logic of the imagination". Mathematical imagination "allows us to see" ratios, says Descartes. Mathematics are thus considered as being "transparent". The Classics' use of mathesis universalis can be distinguished, then, by its desire to bring this transparency from a metaphorical realm to a mathematical one
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Nantois-Kobayashi, Sachi. ""Mathesis singularis" : lecture et subjectivité dans l'oeuvre de Roland Barthes". Paris 4, 2006. http://www.theses.fr/2006PA040197.

Testo completo
Abstract (sommario):
L’évolution intellectuelle de Barthes est souvent hantée du constat, en apparence irréconciliable et irréductible, de la dualité : soit Barthes théoricien, soit Barthes amateur désinvolte ? Cette étude prend pour point de départ cette contradiction réitérée par l’auteur lui-même. Dans un premier temps, l’élaboration du système sémiologique s’avère appuyée sur la subjectivité, certes non impressionniste, mais enracinée dans l’expérience et la pratique, contrairement aux lieux communs propres à la science. Dans un deuxième temps, le sujet revient en premier plan sous le signe de la rupture. La recherche de la « subjectivité absolue » qui part de « mes » réactions subjectives prenant les affects pour points de référence, s’installe dans une certaine forme de savoir en vertu de la recherche de l’essence de la photographie et de celle de la nouvelle écriture appelée « Roman » : l’une est « mathesis singularis » et l’autre est la « science fantasmatique »
The intellectual evolution of Barthes is frequently haunted by the apparently contradictory assertion of the duality : theorist Barthes or nonchalant amateur Barthes ? This study as a starting point takes this contradiction repeated by the same author. In the first time, the elaboration of the semiotic system appears founded on the subjectivity, certainly not impressionist, but rooted in the experience and the practice, on the contrary to the commonplace proper to the science. In the second time, the subject comes back in the sign of the break. The searching of the « absolute subjectivity » which starts from “my” subjective reactions by taking the affects for reference points, is placed in a certain form of the knowledge by virtue of the quest for the essence of the photography and the new form of writing called “Roman” : the one is “mathesis singularis” et the other is the “science of fantasy”
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Wood, David W. ""Mathesis of the Mind" : a Study of Fichte’s Wissenschaftslehre and Geometry". Paris 4, 2009. http://www.theses.fr/2009PA040135.

Testo completo
Abstract (sommario):
Cette thèse est une étude du rôle de la géométrie dans la philosophie du penseur idéaliste allemand Johann Gottlieb Fichte (1762-1814) dans son œuvre majeure : la Doctrine de la science, en ses différentes versions de 1794 à 1814. Nous proposons une reconstruction de sa philosophie des mathématiques fondée sur le texte fragmentaire de l’Erlanger Logik (1805). La philosophie fichtéenne des mathématiques repose sur neuf éléments principaux. Elle a pour fondement un modèle de géométrie synthétique et transcendantale ; pour point de départ, des éléments archétypaux (Ur) ou idéaux ; et elle est platonicienne quant à son statut ontologique. Elle tente également de résoudre le problème des lignes parallèles et de déduire les dimensions de l’espace. En outre, la théorie fichtéenne de la connaissance mathématique repose sur l’intuition et la construction qui sont interprétées comme des paradigmes pour l’intuition et la construction philosophiques. Toutefois, Fichte montre que toutes les intuitions et constructions spécifiques de la géométrie sont fondées dans les intuitions et constructions plus universelles de sa philosophie. Par ailleurs, les éléments fondamentaux de la géométrie, tels que le point, la ligne et le tracer d’une ligne fournissent chacun une image (Bild) philosophique des divers actes et activités du moi. Enfin, le premier principe ou Grundsatz de sa Doctrine de la science possède, selon Fichte, les mêmes caractéristiques que les premiers postulats de la géométrie : évidence, certitude et irréfutabilité. C’est pourquoi il considère l’étude de la géométrie et des mathématiques pures comme une parfaite propédeutique à l’étude de son système de philosophie
This is a study of the role of geometry in the philosophy of the German idealistic thinker Johann Gottlieb Fichte (1762-1814) in his main life’s work the Wissenschaftslehre (1794-1814). I propose a reconstruction of his philosophy of mathematics based on his fragmentary text the Erlanger Logik 1805. The Fichtean philosophy of mathematics is based on nine principal elements. It includes a synthetic and transcendental model of geometry as its foundation, has a number of archetypal (Ur) or ideal elements as its starting point, and is Platonistic in an ontological sense. It also seeks to solve the problem of parallel lines and the deduction of the dimensions of space. In addition, Fichte’s theory of mathematical cognition is grounded in intuition and construction, which are interpreted as paradigms for philosophical intuition and construction. However, Fichte shows that all the specific intuitions and constructions of geometry are grounded in the more universal intuitions and construction of his philosophy. Moreover, the fundamental elements of geometry, such as the point, line and drawing of the line, all furnish philosophical images (Bilder) for the acts and activities of the I or self. Finally, the first postulates of geometry possess the characteristics of self-evidence, certitude and irrefutability. According to Fichte, the first principle or Grundsatz of his Wissenschaftslehre possesses the same characteristics, thus for him the study of geometry and pure mathematics serves as a perfect propedeutic to the study of his system of philosophy
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Li, Guang-Xing [Verfasser]. "Mathesis of star formation -- from kpc to parsec scales / Guang-Xing Li". Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/1077289944/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Mellamphy, D. A. "Le pas sage, a mathesis, angeometry & djinnialogy of the short story". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ28619.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Mace, Hannah Elizabeth. "Firmicus Maternus' Mathesis and the intellectual culture of the fourth century AD". Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/11039.

Testo completo
Abstract (sommario):
The focus of this thesis is Firmicus Maternus, his text the Mathesis, and their place in the intellectual culture of the fourth century AD. There are two sections to this thesis. The first part considers the two questions which have dominated the scholarship on the Mathesis and relate to the context of the work: the date of composition and Firmicus' faith at the time. Chapter 1 separates these questions and reconsiders them individually through an analysis of the three characters which appear throughout the text: Firmicus, the emperor, and the addressee Mavortius. The second part of the thesis considers the Mathesis within the intellectual culture of the fourth century. It examines how Firmicus establishes his authority as a didactic astrologer, with an emphasis on Firmicus' use of his sources. Chapter 2 examines which sources are credited. It considers the argument that Manilius is an uncredited source through an analysis of the astrological theory of the Mathesis and the Astronomica. In addition, the astrological theory of Ptolemy's Tetrabiblos is compared to the Mathesis to assess Firmicus' use of his named sources. The methods that Firmicus uses to assert his authority, including his use of sources, are compared to other didactic authors, both astrological or Late Antique in Chapter 3. This chapter examines whether Firmicus' suppression and falsifying of sources is found in other didactic literature. Chapter 4 considers possible reasons for the omission of Manilius' name and also the effect that this has had on intellectual culture and the place of the Mathesis within it.
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Smith, Nathan Douglas. "The Origins of Descartes' Concept of Mind in the Regulae ad directionem ingenii". Thesis, Boston College, 2010. http://hdl.handle.net/2345/bc-ir:101348.

Testo completo
Abstract (sommario):
Thesis advisor: Richard Cobb-Stevens
Thesis advisor: Jean-Luc Solere
This dissertation attempts to locate the origins of Descartes' concept of mind in his early, unfinished treatise on scientific method, the Regulae ad directionem ingenii. It claims that one can see, in this early work, Descartes' commitment to substance dualism for methodological reasons. In order to begin an analysis of the Regulae, one must first attempt to resolve textual disputes concerning its integrity and one must understand the text as a historical work, dialectically situated in the tradition of late sixteenth and early seventeenth century thought. The dissertation provides this historical backdrop and textual sensitivity throughout, but it focuses on three main themes. First, the concept of mathesis universalis is taken to be the organizing principle of the work. This methodological principle defines a workable technique for solving mathematical problems, a means for applying mathematics to natural philosophical explanations, and a claim concerning the nature of mathematical truth. In each case, the mathesis universalis is designed to fit the innate capacities of the mind and the objects studied by mathesis are set apart from the mind as purely mechanical and geometrically representable objects. Second, Descartes' account of perceptual cognition, the principles of which are found in the Regulae, is examined. In this account, Descartes describes perception as a mechanical process up to the moment of conscious awareness. This point of awareness and the corresponding actions of the mind are, he claims, independent from mechanical principles; they are incorporeal and cannot be explained reductively. Finally, when Descartes outlines the explanatory bases of his natural science, he identifies certain "simple natures." These are the undetermined categories according to which actual things can be known. Descartes makes an explicit distinction between material simples and intellectual simples. It is argued that this distinction suggests a difference in kind between the sciences of the material world and the science or pure knowledge of the intellectual world. Though the Regulae is focused on physical or material explanations, there is a clear commitment to distinguishing this type of explanation from the explanation of mental content and mental acts. Hence, the Regulae demonstrates Descartes' early, methodological commitment to substance dualism
Thesis (PhD) — Boston College, 2010
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Philosophy
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Ramos, José Portugal dos Santos. "A estrutura da filosofia prática de Descartes". Programa de Pós-Graduação em Filosofia da UFBA, 2008. http://www.repositorio.ufba.br/ri/handle/ri/11486.

Testo completo
Abstract (sommario):
102f.
Submitted by Suelen Reis (suziy.ellen@gmail.com) on 2013-04-16T18:23:27Z No. of bitstreams: 1 Dissertacao Jose Ramosseg.pdf: 1260926 bytes, checksum: 53097fbd14c8bf40917c40b05a859d3d (MD5)
Approved for entry into archive by Rodrigo Meirelles(rodrigomei@ufba.br) on 2013-05-29T14:47:30Z (GMT) No. of bitstreams: 1 Dissertacao Jose Ramosseg.pdf: 1260926 bytes, checksum: 53097fbd14c8bf40917c40b05a859d3d (MD5)
Made available in DSpace on 2013-05-29T14:47:30Z (GMT). No. of bitstreams: 1 Dissertacao Jose Ramosseg.pdf: 1260926 bytes, checksum: 53097fbd14c8bf40917c40b05a859d3d (MD5) Previous issue date: 2008
A presente dissertação tem por objetivo explicar a estruturação da ciência cartesiana proposta nas obras do Discurso do método e na Geometrie. O caminho percorrido para chegar ao objetivo proposto foi estudar a possibilidade da caracterização da noção metódica de inteligibilidade através da filosofia matemática de Descartes. A noção metódica de inteligibilidade é o procedimento analítico que estabelece o conhecimento verdadeiro sobre o campo restrito do entendimento. Esta noção metódica possibilita, em última instância, a construção cientifica através de parâmetros claros e distintos, os quais têm como ponto de partida o pensamento analítico, a concepção de perfeição em Deus e a regularidade do método nos pressupostos matemáticos da mathesis universalis.
Salvador
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Beckers, Danny. ""Het despotisme der Mathesis" : opkomst van de propaedeutische functie van de wiskunde in Nederland, 1750-1850 /". Hilversum : Verloren, 2003. http://catalogue.bnf.fr/ark:/12148/cb39035388h.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Smith, Nathan D. "Les origines du concept cartésien de l’esprit dans les Règles pour la direction de l’esprit". Thesis, Paris 4, 2010. http://www.theses.fr/2010PA040096.

Testo completo
Abstract (sommario):
La thèse vise à expliquer dans son contexte historique les Règles pour la direction de l'esprit par rapport au concept de l'esprit cartésien. J'argue que les Règles montrent une tendance vers un concept dualiste de l'esprit. Les raisons pour cette position, je pense, sont la plupart méthodologiques. Dans les Règles, Descartes a développé les fondements philosophiques de la méthode cartésienne qui a pour objet la résolution de tous les plus célèbres problèmes de l'époque dans la science de la nature et la mathématique. Cette méthode s'est fondée sur l'idée que tous les phénomènes naturels puissent être expliqués par les modèles géométriques. Alors, pour Descartes la méthode de la science de la nature est réductive, basé sur les modèles mathématiques. En conséquence, Descartes a évidement cru que les modèles qui expliquent la nature physique ne sont pas les mêmes qui puissent expliquer la nature de l'esprit. En plus, chez les Règles, l'esprit paraît comme le véhicule de la compréhension du monde physique, et par la physiologie du cerveau et par déterminer les paramètres scientifiques de l'explication et la représentation du monde physique. Donc l'esprit est bien séparée du monde physique dans les deux sens : il ne se réduit pas aux principes physique et il organise et soutiens les principes physiques. Nous validerons cette thèse en insistant sur quatre points spécifiques: (1) l'importance historique du texte des Règles pour la pensée cartésienne, (2) la nature et l'histoire de la mathesis universalis, (3) la physiologie de la cognition, et (4) les natures simples
The dissertation aims to contextualize and understand the Regulae ad directionem ingenii as embodying theses central to the development of Descartes' mature metaphysical concept of mind. I argue that the Regulae demonstrates a tendancy toward a dualistic concept of mind. The reasons for this, I believe, are largely methodoligical. In the Regulae, Descartes develops the philosophical foundations for a scientific method that, he thought, would allow him to solve some of the most puzzling phenomena in nature and mathematics. This method is basically predicated on the idea that all natural phenomena, i.e., physical entities, can be understood by reducing those entities to geometrical models. These geometrical models could understood and explained either mechanically or algebraically. In either case, for Descartes the scientific method is essentially reductive. As a consequence,, he clearly believes that the models that explain the physical world are not the same as those that explain the nature of the mind. Furthermore, in the Regulae, the mind appears to be a vehicle for understanding the physical world, through the physiology of the brain and by determining the scientific parameters for any representation or explanation of the physical world. Thus, the mind is truly separated from the physical world in two senses: it cannot be reduced to physical principles and it organizes and found those physical principles. We will see how this is the case by focusing on four issues: (1) the historical significance of the text in the development of Descartes' thought (2) the mathesis universalis (3) the physiology of cognition and (4) the simple natures
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Safou, Jean-Bernard. "Husserl et la métaphysique de Descartes : essai d'une interprétation phénoménologique du projet cartésien de la Mathesis universalis". Paris 4, 1999. http://www.theses.fr/1999PA040047.

Testo completo
Abstract (sommario):
La phénoménologie, en tant que philosophie du vingtième siècle finissant, est la métaphysique. Certes Husserl, en fondant la phénoménologie, fonde aussi la métaphysique sur des bases nouvelles, mais, qui restent tributaires de la tradition philosophique. Car, Husserl recourt à la doctrine de la mathesis universalis que Descartes a remise en valeur au dix-septième siècle pour accéder à la philosophie, qu'il a baptisée la phénoménologie. La doctrine de la mathesis universalis telle que Descartes la conçoit se définit comme un projet; la réalisation du projet philosophique cartésien se manifeste par la science universelle. Le nom qu'attribue Descartes à la philosophie, la science universelle ou sagesse humaine, légitime le sens de la philosophie, la philosophie première. Husserl reprend l'idée cartésienne de la philosophie, la science universelle. Ainsi la phénoménologie assume-t-elle le sens de la métaphysique, autrement dit la philosophie première.
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Gérard, Vincent. "Mathematique universelle et metaphysique de l'individuation. L'elaboration de l'idee de mathesis universalis dans la phenomenologie de husserl". Paris 12, 2001. http://www.theses.fr/2001PA120046.

Testo completo
Abstract (sommario):
La mathesis universalis est-elle l'ontologie formelle ? telle est la question a laquelle-nous nous proposons de repondre dans ce travail. Dans la premiere partie, on trouve la genese de ridee de mathesis universalis comme ontologie formelle. Dans la deuxieme, les delimitations ontologiques de la mathesis universalis par rapport a la geometrie et l'axiologie formelle. Dans la troisieme, l'elucidation phenomenologique de la mathesis universalis comme theorie des sens apophantiques purs. Dans la quatrieme, son articulation sur une metaphysique formelle ou theorie de l'individuation : la mathesis universalis est alors rearticulee sur l'ontologie formelle, mais en un autre sens de l'ontologie formelle. Les resultats auxquels nous sommes parvenu sont les suivants : 1) husserl emprunte son concept de mathesis universalis, non pas a la regle iv-b de descartes, soit pour en accomplir le sens, soit pour la detourner de son sens, mais a la tradition arihmetisante de van schooter, wallis, newton et du leibniz de 1695 ; 2) l'elaboration husserlienne de l'idee de mathesis universalis est une tentative pour identifier un ensemble de noyaux regulateurs (principe de permanence de hankel, etc. ) quinorment les possibilite d'admission d'objets dans le champ analytique formel; 3) la geometrie comme science de l'espace est exclue de ce champ ; 4) il existe en revanche une analogie radicale entre l'axiologie formelle et la mathesis universatis ; 5) husserl n'est pas seulement redevable a leibniz de l'idee de mathesis universalis, mais egalement de sa conversion philosophique; 6) la mathesis philosophique pensee a la lumiere de la theorie de la connaissance telle qu'elle est elaboree par leibniz vers 1684 n'est, ni ne veut etre, une theorie de l'etre, mais une theorie pure de la sification; 7) cette theorie de la signification s'articule sur une metaphysique formelle dont husserl emprunte le concept a lotze. Elle a pour tache de decrire les formes ideales auxquelles doivent correspondre les relations entre les elements d'un monde, quel qu'il soit.
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Jourdan, Robert. "Culture biblique, mathesis et structures de la communication dans "The crying of Lot 49" de Thomas Pynchon". Paris 8, 1997. http://www.theses.fr/1997PA081293.

Testo completo
Abstract (sommario):
Le present ouvrage se presente sous la double forme d'une interrogation sur l'ideologie du langage et son rapport a l'antiquite greco-romaine, mais aussi judeo- chretienne, dans le livre (ou longue nouvelle) the crying of lot 49 de thomas pynchon ainsi que d'une remise en perspective de la diegese dans le cadre plus large des litteratures nord-americaines a + sous-complot ; (anglais sub-plot). La reference de thomas pynchon a la paranoia et son utilisation de constantes de l'histoire europeenne semblent, pour l'auteur de cette these, impliquer un rapport a l'inde dans ce qu'il est convenu d'appeler l'+ indo-europeen ; du domaine linguistique et ce n'est plus celui des auteurs anterieurs a la litterature dite + post-moderne ; ; la californie de ce livre est une + kali ;-fornie ou, comme chez richard farina l'auteur de been down so long it looks like up to me, les significations plus ou moins occultes et religieuses qui sont monnaie courante dans cette litterature prennent un tour logico- mathematique precis. Parvenus a la fin de notre analyse, il nous semble que ces + jeux ; laissaient entendre que la manipulation des consciences, deja entrevue vers l'epoque jacobeenne qui connaissait la + mathesis ; ou pouvoir + magique ; des mathematiques est aujourd'hui arrivee a maturite. La litterature post-moderne, toutefois, tant qu'elle peut paraitre, y est une puissante antidote
This dissertation takes the double shape of, firstly, an interrogation over language ideology and its relation to the graeco-roman and judaeo-christian worlds in thomas pynchon's novelette the crying of lot 49 and secondly of a renewed look at the diegesis thereof in the larger frame of typical + sub-plots ; in north-american literature. Thomas pynchon's frequent reference to + paranoia ; and his use of recurring schemes in european history may indicate, at least for the author of this study, a certain link to india in what is called the + indo-european ; part of english linguistics and this, in turn, is not the attitude of the novelists who predated the post- modernist american literature anymore. California in this book is + kali ;-fornia like it was in richard farina's been down so long it looks like up to me, for instance, and the more or less occult significations which are quite commonplace in that type of literature take here a new aspect : they become logical, even mathematical and very precisely so. At the end of this analysis, we can understand that these + games ; able to manipulate conciousnesses were freshly tested when giordano bruno's + mathesis ; or magical power of the higher mathematics was used during the jacobean era but have now reached their maturity. Post-modern literature is a powerful antidote, though, at least as long as it can get published
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Oliveira, Zaqueu Vieira [UNESP]. "A classificação das disciplinas matemáticas e a Mathesis Universalis nos séculos XVI e XVII: um estudo do pensamento de Adriaan van Roomen". Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/132137.

Testo completo
Abstract (sommario):
Made available in DSpace on 2015-12-10T14:24:07Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-05-06. Added 1 bitstream(s) on 2015-12-10T14:30:16Z : No. of bitstreams: 1 000853647.pdf: 7268524 bytes, checksum: 086c1d276b8bf1a55b1a2d148b72998c (MD5)
Durante os séculos XVI e XVII é possível encontrar diversos estudos acerca da classificação das disciplinas, suas especificidades e diferenças. Pensadores desse período como Petrus Ramus (1515-1572), Christoph Clavius (1538-1612), Adriaan van Roomen (1561-1615) e Francis Bacon (1561-1626) se debruçaram sobre o tema não somente para classificar, organizar e hierarquizar aquelas disciplinas que eles denominavam de disciplinas matemáticas, mas também para estudar a natureza do conhecimento matemático buscando compreender se o tipo de demonstração realizada pelas disciplinas matemáticas produzia um conhecimento certo e indubitável, além de estabelecer relações com outras áreas, principalmente com a filosofia. Neste trabalho, analiso a obra Universae Mathesis Idea (1602) e o liber primus da Mathesis Polemica (1605), as quais contêm uma pequena descrição das dezoito disciplinas que van Roomen denomina de matemáticas. Tais disciplinas estão divididas em dois grupos: as matemáticas principais que são subdivididas em matemáticas puras (logística, prima mathesis, aritmética e geometria) e mistas (astronomia, uranografia, cronologia, cosmografia, geografia, corografia, topografia, topothesis, astrologia, geodesia, música, óptica e euthymetria); e as matemáticas mecânicas (sphaeropoeia, manganaria, mechanopoetica, organopoetica e thaumatopoetica) que estão relacionadas ao uso e construção de máquinas, assunto que está diretamente relacionado à instrumentação matemática, que se desenvolveu bastante naquele período. O autor traz ainda um breve capítulo sobre as disciplinas que ele nomeia de quase matemáticas. A descrição das disciplinas matemáticas de van Roomen inclui dentre outras coisas, o objeto de estudo, os princípios, o lugar em relação às demais disciplinas e a utilidade de cada uma. Buscarei não somente contribuições para estudos sobre a vida e obra de van Roomen, mas também...
During the sixteenth and seventeenth centuries we can find many studies on the classification of disciplines, their specifities and differences. Scholars of this period as Petrus Ramus (1515-1572), Christoph Clavius (1538-1612), Adriaan van Roomen (1561- 1615) and Francis Bacon (1561-1626) not only dedicated to sort, organize and prioritize those disciplines they denominated of mathematical disciplines, but also to study the nature of mathematical knowledge in order to understand if the type of statement made by mathematical disciplines produced a certain and indubitable knowledge, and to establish relatioships with other áreas, specially with philosophy. in this thesis, I analyse the work Universae Mathesis Idea (1602) and the liber pirmus of Mathesis Polemica (1605), wich contain a short description of the eighteen disciplines wich van Roomen calls mathematics. Such disciplines are divided into two groups: the principal mathematics wich are subdivided into pure mathematics (logistics, prima mathesis, arithmetic, and geometry) and mixed mathematics (astronomy, uranography, chronology, cosmography, geography, chorography, topography, topothesis, astrology, geodesy, music, optics, and euthymetria); and mechanical mathematics (sphaeropoeia, manganaria, mechanopoetica, organopoetica, and thaumatopoetica) that are related to the use and construction machinery, a subject that is directly related to mathematics instrumentation, which developed quite period. The author also presentes a brief chapter about the subjects he calls the almost mathematics. The description of van Roomen's mathematical disciplines includes among other things, the object of study, the principles, the place in relation to other disciplines and the usefulness of each. Seek contributions to studies on the life and work of van Roomen, and also try to understand some aspects of the philosophical status of mathematics at the time. Furthermore, I am ...
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Oliveira, Zaqueu Vieira. "A classificação das disciplinas matemáticas e a Mathesis Universalis nos séculos XVI e XVII : um estudo do pensamento de Adriaan van Roomen /". Rio Claro, 2015. http://hdl.handle.net/11449/132137.

Testo completo
Abstract (sommario):
Orientador: Marcos Vieira Teixeira
Banca: Carlos Henrique Barbosa Gonçalves
Banca: Fàbio Maia Bertato
Banca: Fumikazu Saito
Banca: Thomás Augusto Santoro Haddad
Resumo: Durante os séculos XVI e XVII é possível encontrar diversos estudos acerca da classificação das disciplinas, suas especificidades e diferenças. Pensadores desse período como Petrus Ramus (1515-1572), Christoph Clavius (1538-1612), Adriaan van Roomen (1561-1615) e Francis Bacon (1561-1626) se debruçaram sobre o tema não somente para classificar, organizar e hierarquizar aquelas disciplinas que eles denominavam de "disciplinas matemáticas", mas também para estudar a natureza do conhecimento matemático buscando compreender se o tipo de demonstração realizada pelas disciplinas matemáticas produzia um conhecimento certo e indubitável, além de estabelecer relações com outras áreas, principalmente com a filosofia. Neste trabalho, analiso a obra Universae Mathesis Idea (1602) e o liber primus da Mathesis Polemica (1605), as quais contêm uma pequena descrição das dezoito disciplinas que van Roomen denomina de "matemáticas". Tais disciplinas estão divididas em dois grupos: as matemáticas principais que são subdivididas em matemáticas puras (logística, prima mathesis, aritmética e geometria) e mistas (astronomia, uranografia, cronologia, cosmografia, geografia, corografia, topografia, topothesis, astrologia, geodesia, música, óptica e euthymetria); e as matemáticas mecânicas (sphaeropoeia, manganaria, mechanopoetica, organopoetica e thaumatopoetica) que estão relacionadas ao uso e construção de máquinas, assunto que está diretamente relacionado à instrumentação matemática, que se desenvolveu bastante naquele período. O autor traz ainda um breve capítulo sobre as disciplinas que ele nomeia de "quase matemáticas". A descrição das disciplinas matemáticas de van Roomen inclui dentre outras coisas, o objeto de estudo, os princípios, o lugar em relação às demais disciplinas e a utilidade de cada uma. Buscarei não somente contribuições para estudos sobre a vida e obra de van Roomen, mas também...
Abstract: During the sixteenth and seventeenth centuries we can find many studies on the classification of disciplines, their specifities and differences. Scholars of this period as Petrus Ramus (1515-1572), Christoph Clavius (1538-1612), Adriaan van Roomen (1561- 1615) and Francis Bacon (1561-1626) not only dedicated to sort, organize and prioritize those disciplines they denominated of "mathematical disciplines", but also to study the nature of mathematical knowledge in order to understand if the type of statement made by mathematical disciplines produced a certain and indubitable knowledge, and to establish relatioships with other áreas, specially with philosophy. in this thesis, I analyse the work Universae Mathesis Idea (1602) and the liber pirmus of Mathesis Polemica (1605), wich contain a short description of the eighteen disciplines wich van Roomen calls "mathematics". Such disciplines are divided into two groups: the principal mathematics wich are subdivided into pure mathematics (logistics, prima mathesis, arithmetic, and geometry) and mixed mathematics (astronomy, uranography, chronology, cosmography, geography, chorography, topography, topothesis, astrology, geodesy, music, optics, and euthymetria); and mechanical mathematics (sphaeropoeia, manganaria, mechanopoetica, organopoetica, and thaumatopoetica) that are related to the use and construction machinery, a subject that is directly related to mathematics instrumentation, which developed quite period. The author also presentes a brief chapter about the subjects he calls the "almost mathematics". The description of van Roomen's mathematical disciplines includes among other things, the object of study, the principles, the place in relation to other disciplines and the usefulness of each. Seek contributions to studies on the life and work of van Roomen, and also try to understand some aspects of the philosophical status of mathematics at the time. Furthermore, I am ...
Doutor
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Sato, Masato. "La formation du concept de nature chez Descartes jusqu’au Discours de la méthode". Thesis, Paris 4, 2016. http://www.theses.fr/2016PA040120.

Testo completo
Abstract (sommario):
Le vif intérêt de Descartes porté constamment au concept de nature se manifeste dans son usage fréquent du terme avec toute sa complexité sémantique. La nature lui signifie d’abord la physique, à laquelle il travaille particulièrement dans les années 1630. Elle est ensuite l’essence et ce qui rend possible notre disposition essentielle en nous instituant, et cet usage se trouve fréquemment en Meditationes. Mais le concept cartésien de nature n’épuise pas toutes ses apparitions dans les usages du terme explicite, car il apparaît aussi implicitement dans un lien dyadique de la recherche du jeune Descartes. D’une part, celui-ci reconnaît dès le début de sa carrière l’existence intrinsèque des vérités dans notre esprit, dont les semences de vérités et les naturae simplices en tant qu’aboutissement de ce concept. D’autre part, le but principal du jeune philosophe est d’élucider les facultés naturelles de l’ingenium, avec la méthode épistémologique qui peut en être tirée naturellement. Le « naturel (-lement) » ne concerne pas seulement le mécanisme des connaissances, mais aussi la question de ce qui les rend naturelles, à savoir leurs fondements. Le concept de nature renvoie ainsi, pour Descartes jusqu’au Discours de la méthode, moins à l’essence qu’à la structure naturelle de connaître les vérités naturellement existantes dans l’esprit, et sa physique est une science appliquée de ces vérités sur les phénomènes naturels. Cette élucidation de la naturalité épistémique est une condition préalable à sa prochaine recherche sur la naturalité ontologique par la quête de raisons de certitude, à savoir la recherche en nature au sens d’essence qui s’effectuera en Meditationes
The keen interest of Descartes constantly found in the concept of nature manifests itself in his frequent use of the term with all its semantic complexity. Nature means to him first of all the physics, on which he works particularly in the 1630s. Then, it is the essence and what makes possible our essential disposition by instituting us, and this use is frequently found in Meditationes. But the Cartesian concept of nature does not exhaust all its appearances in the uses of the explicit term, because it also appears implicitly in a dyadic link of the research of the young Descartes. On one hand, he recognizes from the beginning of his career the intrinsic existence of truths in our spirit, among which are found seeds of truths and naturae simplices as a culmination of this concept. On the other hand, the main purpose of the young philosopher is to elucidate natural faculties of ingenium with the epistemological method that can be drawn from it naturally. "Natural(-ly)" concerns not only the mechanism of knowledge, but also the question of what makes it natural, namely its foundations. The concept of nature refers thus, for Descartes until the Discourse on Method, less to the essence than to the natural structure to know the truths naturally existing in mind, and his physics is an applied science of these truths to the natural phenomena. This elucidation of the epistemic naturality is a prerequisite for his next research on the ontological naturality by the search of reasons of certainty, namely the research of nature in the sense of essence which will be carried out in Meditationes
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Santos, Roger Moura dos. "A via simbólica na fundamentação da matese de mário ferreira dos santos". Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9570.

Testo completo
Abstract (sommario):
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-09-19T14:20:43Z No. of bitstreams: 1 arquivototal.pdf: 4279418 bytes, checksum: 9eeb4c3b3022516f237f7a2d02939cd3 (MD5)
Made available in DSpace on 2017-09-19T14:20:43Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 4279418 bytes, checksum: 9eeb4c3b3022516f237f7a2d02939cd3 (MD5) Previous issue date: 2016-07-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Esta dissertação versa sobre a Matese da Filosofia Concreta de Mário Ferreira dos Santos. Em sua obra homônima ao seu projeto, Filosofia Concreta, há um predomínio da via ascensional (aristotélico-tomista); nas obras de Matese há a primazia da via descensional (platônica) – de modo que o filósofo imprime um embasamento de dupla via sobre o mesmo projeto filosófico, com o fim de enrijecê-lo. A Matese tem forte verve pitagórico-platônica, e emprega sobremaneira a via simbólica nos seus postulados. Então, como nos detemos sobre ela, após fazer uma breve síntese de alguns projetos de Mathesis, desenvolvemos a concepção de símbolo, analogia e participação: com o intuito de mostrar a correspondência que o filósofo brasileiro faz entre as suas convicções, a teoria da participação das formas platônicas, a mímeses e a simbólica numérica pitagórica. Feito isto, analisamos a Matese de Mário Ferreira – seu objeto de estudo (o princípio enquanto princípio), alguns dos seus postulados (formulações de leis eternas) e seu fim: a afirmação rigorosa do ser.
Esta dissertação versa sobre a Matese da Filosofia Concreta de Mário Ferreira dos Santos. Em sua obra homônima ao seu projeto, Filosofia Concreta, há um predomínio da via ascensional (aristotélico-tomista); nas obras de Matese há a primazia da via descensional (platônica) – de modo que o filósofo imprime um embasamento de dupla via sobre o mesmo projeto filosófico, com o fim de enrijecê-lo. A Matese tem forte verve pitagórico-platônica, e emprega sobremaneira a via simbólica nos seus postulados. Então, como nos detemos sobre ela, após fazer uma breve síntese de alguns projetos de Mathesis, desenvolvemos a concepção de símbolo, analogia e participação: com o intuito de mostrar a correspondência que o filósofo brasileiro faz entre as suas convicções, a teoria da participação das formas platônicas, a mímeses e a simbólica numérica pitagórica. Feito isto, analisamos a Matese de Mário Ferreira – seu objeto de estudo (o princípio enquanto princípio), alguns dos seus postulados (formulações de leis eternas) e seu fim: a afirmação rigorosa do ser.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Alain, Vincent. "Analyse et distinction La logique des notions en Allemagne de 1684 à 1790. Quelques remarques pour servir à l’étude des réceptions par Christian Wolff et Emmanuel Kant des Meditationes de Cognitione, Veritate et Ideis de Leibniz". Thesis, Paris 4, 2012. http://www.theses.fr/2012PA040021.

Testo completo
Abstract (sommario):
Leibniz publie à Leipzig en 1684 un court opuscule devenu classique, Meditationes de Cognitione, Veritate et Ideis. Cet essai de quelques pages constitue un véritable discours de la méthode pour la philosophie allemande. Ce travail tente de justifier cette assertion en reconstituant les étapes de la réception par Christian Wolff et Emmanuel Kant de ce court texte. Elle est ainsi conduite à étudier le développement en Allemagne d’une Begriffsanalyse. Elle affronte donc ce problème : qu’est-ce qu’analyser pour Wolff puis pour Kant ? L’étude de cette logique des notions, de son lien avec les mathématiques et du concept cartésienne de Mathesis universalis, aboutit à préciser la distinction kantienne entre méthode dogmatique et dogmatisme. Cette enquête remonte aux sources leibniziennes de la division classique des jugements en analytiques et synthétiques. Elle se conclut par l’étude de la critique d’Eberhard. Bref, pour reprendre une formule de Michel Fichant, elle tente d’établir « que derrière l’allemand de Kant se tient le latin de Leibniz »
Leibniz published in 1684 a short opuscule, Meditationes de Cognitione, Veritate et Ideis. This Leibniz’s essay of few pages is a true discours de la méthode for the German philosophy. This research tries to justify this declaration and restores the reception of this short text by Christian Wolff and Immanuel Kant. This work studies the development of the Begriffsanalyse in Germany. But, what means analysis for Wolff and for Kant? The study of this logic of notions, its bond to mathematics and with the Cartesian conception of Mathesis universalis, clarifies the Kantian distinction between dogmatic method and dogmatism. This inquiry goes back to the Leibnizian origin of the classical division of analytic and synthetic judgments. This work comes to an end by the study of Eberhard’s critic of the Critic. In short, like Michel Fichant formulated, this study wants to make manifest that « behind German words of Kant lay down Latin words of Leibniz »
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Lawrence, Nicholas. "A Brief Introduction to Transcendental Phenomenology and Conceptual Mathematics". Thesis, Södertörns högskola, Filosofi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-32873.

Testo completo
Abstract (sommario):
By extending Husserl’s own historico-critical study to include the conceptual mathematics of more contemporary times – specifically category theory and its emphatic development since the second half of the 20th century – this paper claims that the delineation between mathematics and philosophy must be completely revisited. It will be contended that Husserl’s phenomenological work was very much influenced by the discoveries and limitations of the formal mathematics being developed at Göttingen during his tenure there and that, subsequently, the rôle he envisaged for his material a priori science is heavily dependent upon his conception of the definite manifold. Motivating these contentions is the idea of a mathematics which would go beyond the constraints of formal ontology and subsequently achieve coherence with the full sense of transcendental phenomenology. While this final point will be by no means proven within the confines of this paper it is hoped that the very fact of opening up for the possibility of such an idea will act as a supporting argument to the overriding thesis that the relationship between mathematics and phenomenology must be problematised.
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Oganesjanová, Lena. "Alexandr Blok v českých překladech. Překlad poémy Dvanáct". Master's thesis, 2014. http://www.nusl.cz/ntk/nusl-342424.

Testo completo
Abstract (sommario):
The detailed comparative analysis of four Czech translations of Alexander Blok's poem The twelve is at the crux of this diploma thesis. Concurrently, it sets the assessment of translation mastery of each translation based on criteria of poetry translation as defined by the signifiant Czech theorecian Jiří Levý. Aesthetic interpretaton of the poem and the description of distinctive features of Block's poetry precede the main part of the thesis. The author comes to a conclusion only two of the translations can be called acceptable to present-day readers (Vojtěch Jestřáb's and Václav Daněk's translations). Nevertheless, the translation by Bohumil Mathesius has a certain aesthetic quality, and if it is looked at from a historical perspective it can be appraised as succeful translation work. The very first translation by young Czech poet Jaroslav Seifert satisfies current poetry translation criteria the least. But there is also an another reason for it: both the Seifert's and Mathesius's translations are greatly influenced by the former language standard (the language obsolescence manifests itself at differet levels). Yet, the latest translations differ too. Jestřáb's method focuses upon stressing exotisicm in his translation, whereas Daněk concentrates on naturalisation. Considering the fact that both...
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia