Letteratura scientifica selezionata sul tema "MDLNN"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "MDLNN".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "MDLNN"
AL-Ghamdi, Abdullah S. AL-Malaise, e Mahmoud Ragab. "Tunicate swarm algorithm with deep convolutional neural network-driven colorectal cancer classification from histopathological imaging data". Electronic Research Archive 31, n. 5 (2023): 2793–812. http://dx.doi.org/10.3934/era.2023141.
Testo completoLy, Ngoc Q., Tuong K. Do e Binh X. Nguyen. "Large-Scale Coarse-to-Fine Object Retrieval Ontology and Deep Local Multitask Learning". Computational Intelligence and Neuroscience 2019 (18 luglio 2019): 1–40. http://dx.doi.org/10.1155/2019/1483294.
Testo completoKhan, Mohammad Ayoub. "An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier". IEEE Access 8 (2020): 34717–27. http://dx.doi.org/10.1109/access.2020.2974687.
Testo completoPraveena, Anto, e B. Bharathi. "An approach to remove duplication records in healthcare dataset based on Mimic Deep Neural Network (MDNN) and Chaotic Whale Optimization (CWO)". Concurrent Engineering 29, n. 1 (marzo 2021): 58–67. http://dx.doi.org/10.1177/1063293x21992014.
Testo completoLee, Jandee, Chan Hee Kim, In Kyung Min, Seonhyang Jeong, Hyunji Kim, Moon Jung Choi, Hyeong Ju Kwon, Sang Geun Jung e Young Suk Jo. "Detailed characterization of metastatic lymph nodes improves the prediction accuracy of currently used risk stratification systems in N1 stage papillary thyroid cancer". European Journal of Endocrinology 183, n. 1 (luglio 2020): 83–93. http://dx.doi.org/10.1530/eje-20-0131.
Testo completoSukardi, Hadi Ahmad. "ANALISIS INVESTASI SAHAM DENGAN MENGGUNAKAN CAPITAL ASSET PRICING MODEL". Jurnal SIKAP (Sistem Informasi, Keuangan, Auditing Dan Perpajakan) 5, n. 1 (8 febbraio 2021): 18. http://dx.doi.org/10.32897/jsikap.v5i1.251.
Testo completoChen, Yi, Jin Zhou, Qianting Gao, Jing Gao e Wei Zhang. "MDNN: Predicting Student Engagement via Gaze Direction and Facial Expression in Collaborative Learning". Computer Modeling in Engineering & Sciences 136, n. 1 (2023): 381–401. http://dx.doi.org/10.32604/cmes.2023.023234.
Testo completoLackner, Thomas E. "Advances in Managing Overactive Bladder". Journal of Pharmacy Practice 13, n. 4 (1 agosto 2000): 277–89. http://dx.doi.org/10.1106/8843-q9gl-g9xc-mdln.
Testo completoWang, Xingmei, Anhua Liu, Yu Zhang e Fuzhao Xue. "Underwater Acoustic Target Recognition: A Combination of Multi-Dimensional Fusion Features and Modified Deep Neural Network". Remote Sensing 11, n. 16 (13 agosto 2019): 1888. http://dx.doi.org/10.3390/rs11161888.
Testo completoHuang, Xixian, Xiongjun Zeng, Qingxiang Wu, Yu Lu, Xi Huang e Hua Zheng. "Face Verification Based on Deep Learning for Person Tracking in Hazardous Goods Factories". Processes 10, n. 2 (17 febbraio 2022): 380. http://dx.doi.org/10.3390/pr10020380.
Testo completoTesi sul tema "MDLNN"
Terefe, Adisu Wagaw. "Handwritten Recognition for Ethiopic (Ge’ez) Ancient Manuscript Documents". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288145.
Testo completoDet handskrivna igenkännings systemet är en process för att lära sig ett mönster från en viss bild av text. Erkännande Processen kombinerar vanligtvis en datorvisionsuppgift med sekvens inlärningstekniker. Transkribering av texter från den skannade bilden är fortfarande ett utmanande problem, särskilt när dokumenten är mycket försämrad eller har för omåttlig dammiga buller. Nuförtiden finns det flera handskrivna igenkänningar system både kommersiellt och i gratisversionen, särskilt för latin baserade språk. Det finns dock ingen tidigare studie som har byggts för Ge’ez handskrivna gamla manuskript dokument. I motsats till detta språk har många mysterier från det förflutna, i vetenskapens mänskliga historia, arkitektur, medicin och astronomi. I denna avhandling presenterar vi två separata igenkänningssystem. (1) Ett karaktärs nivå igenkänningssystem som kombinerar bildigenkänning för karaktär segmentering från forntida böcker och ett vanilj Convolutional Neural Network (CNN) för att erkänna karaktärer. (2) Ett änd-till-slut-segmentering fritt handskrivet igenkänningssystem som använder CNN, Multi-Dimensional Recurrent Neural Network (MDRNN) med Connectionist Temporal Classification (CTC) för etiopiska (Ge’ez) manuskript dokument. Den föreslagna karaktär igenkännings modellen överträffar 97,78% noggrannhet. Däremot ger den andra modellen ett uppmuntrande resultat som indikerar att ytterligare studera språk egenskaperna för bättre igenkänning av alla antika böcker.
GAUTAM, AJAI KUMAR. "BIOMETRIC RECOGNITION". Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19630.
Testo completoLibri sul tema "MDLNN"
Spsht Mdlng and Dec Analysis. 4a ed. South-Western, Div of Thomson Learning, 2003.
Cerca il testo completoPetroleum Reservoir Mdlng Simulation Geol Geostatistics Perf. McGraw-Hill Education, 2019.
Cerca il testo completoCapitoli di libri sul tema "MDLNN"
Bezerra, Byron Leite Dantas, Cleber Zanchettin e Vinícius Braga de Andrade. "A MDRNN-SVM Hybrid Model for Cursive Offline Handwriting Recognition". In Artificial Neural Networks and Machine Learning – ICANN 2012, 246–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33266-1_31.
Testo completoSharma, Swati, e Varun Prakash Saxena. "Hybrid Sign Language Learning Approach Using Multi-scale Hierarchical Deep Convolutional Neural Network (MDCnn)". In Advances in Intelligent Systems and Computing, 663–77. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5443-6_51.
Testo completo"Optimizing MDLNS Implementations". In Multiple-Base Number System, 203–26. CRC Press, 2017. http://dx.doi.org/10.1201/b11652-8.
Testo completo"The Multidimensional Logarithmic Number System (MDLNS)". In Multiple-Base Number System, 109–34. CRC Press, 2017. http://dx.doi.org/10.1201/b11652-5.
Testo completoSingh, Pooja, Usha Chauhan, S. P. S. Chauhan e Harshit Singh. "Advanced Detection". In Advances in Electronic Government, Digital Divide, and Regional Development, 248–68. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6418-2.ch014.
Testo completoAtti di convegni sul tema "MDLNN"
Reddy, Arikatla Venkata, Pasupuleti Sai Kumar, Pathan Asif Khan, Venkata Subba Reddy Karumudi, Pradeepini G e Sagar Imambi. "MDLNN Approach for Alcohol Detection using IRIS". In 2023 Second International Conference on Electronics and Renewable Systems (ICEARS). IEEE, 2023. http://dx.doi.org/10.1109/icears56392.2023.10085257.
Testo completoRosaline, S., M. Ayeesha Nasreen, P. Suganthi, T. Manimegalai e G. Ramkumar. "Predicting Melancholy risk among IT professionals using Modified Deep Learning Neural Network (MDLNN)". In 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2022. http://dx.doi.org/10.1109/csnt54456.2022.9787571.
Testo completoLyu, Tengfei, Jianliang Gao, Ling Tian, Zhao Li, Peng Zhang e Ji Zhang. "MDNN: A Multimodal Deep Neural Network for Predicting Drug-Drug Interaction Events". In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/487.
Testo completoMartin, Patrick, Jean-Pierre de la Croix e Magnus Egersted. "MDLn: A Motion Description Language for networked systems". In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739185.
Testo completoZhang, Xulong, Jianzong Wang, Ning Cheng e Jing Xiao. "MDCNN-SID: Multi-scale Dilated Convolution Network for Singer Identification". In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022. http://dx.doi.org/10.1109/ijcnn55064.2022.9892338.
Testo completoFrancisco, Maxwell, Felipe Gouveia, Byron Bezerra e Mêuser Valença. "Reconhecimento de Escrita Cursiva Offline Utilizando um Modelo Composto por MDRNN-RC". In 11. Congresso Brasileiro de Inteligência Computacional. SBIC, 2016. http://dx.doi.org/10.21528/cbic2013-089.
Testo completoSalminen, Jukka, Rob Hindley e Sami Saarinen. "Mackenzie Delta LNG Transport and Ice Management Study". In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32302-ms.
Testo completo