Letteratura scientifica selezionata sul tema "Microbial metabolism"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Microbial metabolism".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Microbial metabolism"

1

VINOPAL, R. T. "Microbial Metabolism." Science 239, no. 4839 (1988): 513.2–514. http://dx.doi.org/10.1126/science.239.4839.513.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Downs, Diana M. "Understanding Microbial Metabolism." Annual Review of Microbiology 60, no. 1 (2006): 533–59. http://dx.doi.org/10.1146/annurev.micro.60.080805.142308.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

ARNAUD, CELIA. "VIEWING MICROBIAL METABOLISM." Chemical & Engineering News 85, no. 38 (2007): 11. http://dx.doi.org/10.1021/cen-v085n038.p011.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Wackett, Lawrence P. "Microbial metabolism prediction." Environmental Microbiology Reports 2, no. 1 (2010): 217–18. http://dx.doi.org/10.1111/j.1758-2229.2010.00144.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Hahn-Hägerdal, Bärbel, and Neville Pamment. "Microbial Pentose Metabolism." Applied Biochemistry and Biotechnology 116, no. 1-3 (2004): 1207–10. http://dx.doi.org/10.1385/abab:116:1-3:1207.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wackett, Lawrence P. "Microbial community metabolism." Environmental Microbiology Reports 5, no. 2 (2013): 333–34. http://dx.doi.org/10.1111/1758-2229.12041.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Wackett, Lawrence P. "Microbial community metabolism." Environmental Microbiology Reports 15, no. 3 (2023): 240–41. http://dx.doi.org/10.1111/1758-2229.13161.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Rajini, K. S., P. Aparna, Ch Sasikala, and Ch V. Ramana. "Microbial metabolism of pyrazines." Critical Reviews in Microbiology 37, no. 2 (2011): 99–112. http://dx.doi.org/10.3109/1040841x.2010.512267.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Chubukov, Victor, Luca Gerosa, Karl Kochanowski, and Uwe Sauer. "Coordination of microbial metabolism." Nature Reviews Microbiology 12, no. 5 (2014): 327–40. http://dx.doi.org/10.1038/nrmicro3238.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ash, Caroline. "Microbial entrainment of metabolism." Science 365, no. 6460 (2019): 1414.10–1416. http://dx.doi.org/10.1126/science.365.6460.1414-j.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Tesi sul tema "Microbial metabolism"

1

Burgess, Mary Catherine. "Insights into microbial metabolism." Thesis, Montana State University, 2012. http://etd.lib.montana.edu/etd/2012/burgess/BurgessMC0512.pdf.

Testo completo
Abstract (sommario):
Nitrogen fixation (catalyzed by the enzyme nitrogenase), cellular respiration (completed through the Tricarboxylic Acid (TCA) cycle) and mercury detoxification (through mercury methylation) are three metabolic processes used by a wide variety of microorganisms, but that also have far reaching impacts on nutrient cycling in the environment. Roseiflexus castenholzii has been found to have a unique nitrogenase gene cluster encoding several nitrogenase homologs, including the structural proteins NifH and NifDK and the radical SAM protein, NifB, necessary for cofactor biosynthesis. However, the gen
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Patterson, Andrea Jennifer. "Microbial metabolism of organophosphonates." Thesis, University of Ulster, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.232856.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lister, Diane Lorraine. "The microbial metabolism of cocaine." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390042.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Griffiths, David A. "Microbial mimicry of mammalian drug metabolism." Thesis, Cranfield University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385132.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Hansman, Roberta Lynn. "Microbial metabolism in the deep ocean." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3324933.

Testo completo
Abstract (sommario):
Thesis (Ph. D.)--University of California, San Diego, 2008.<br>Title from first page of PDF file (viewed November 14, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Ohshiro, Takashi. "MICROBIAL SULFUR METABOLISM OF HETEROCYCLIC SULFUR COMPOUNDS." Kyoto University, 1996. http://hdl.handle.net/2433/78073.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Chandrasekaran, Appavu. "Microbial and human metabolism of cardiac glycosides /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487265555441466.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Pires, Aline Mara Barbosa. "Estudos metabolicos para otimização de condições nutricionais e de cultivo para produção microbiana de acido hialuronico." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267027.

Testo completo
Abstract (sommario):
Orientador: Maria Helena Andrade Santana<br>Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica<br>Made available in DSpace on 2018-08-14T16:51:23Z (GMT). No. of bitstreams: 1 Pires_AlineMaraBarbosa_D.pdf: 5667585 bytes, checksum: 99be814ed0f4b52809cad017f91235eb (MD5) Previous issue date: 2009<br>Resumo: Neste trabalho, estudou-se a otimização da produção de ácido hialurônico (HA) por cultivo de Streptococcus zooepidemicus em batelada, com base nas alterações metabólicas ao longo do cultivo. Ás condições ambientais estudadas foram a concentração inicial de
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Johnson, Winifred M. Ph D. Massachusetts Institute of Technology. "Linking microbial metabolism and organic matter cycling through metabolite distributions in the ocean." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108909.

Testo completo
Abstract (sommario):
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references.<br>Key players in the marine carbon cycle are the ocean-dwelling microbes that fix, remineralize, and transform organic matter. Many of the small organic molecules in the marine carbon pool have not been well characterized and their roles in microbial physiology, ecological interacti
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Newbold, Charles James. "Microbial metabolism of lactic acid in the rumen." Thesis, University of Glasgow, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235529.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Libri sul tema "Microbial metabolism"

1

Dahl, Christiane, and Cornelius G. Friedrich, eds. Microbial Sulfur Metabolism. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Christiane, Dahl, and Friedrich Cornelius G, eds. Microbial sulfur metabolism. Springer, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Spormann, Alfred M. Principles of Microbial Metabolism and Metabolic Ecology. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28218-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Caldwell, Daniel R. Microbial physiology and metabolism. 2nd ed. Star, 1999.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Patterson, Andrea Jennifer. Microbial metabolism of organophosphonates. The Author], 2001.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

K, Poole Robert, Dow Crawford S, and Society for General Microbiology. Cell Biology Group., eds. Microbial gas metabolism: Mechanistic, metabolic, and biotechnological aspects. Published for the Society for General Microbiology by Academic Press, 1985.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Stolz, John F., and Ronald S. Oremland, eds. Microbial Metal and Metalloid Metabolism. ASM Press, 2011. http://dx.doi.org/10.1128/9781555817190.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Winkelmann, Günther, and Carl J. Carrano. Transition Metals in Microbial Metabolism. CRC Press, 2022. http://dx.doi.org/10.1201/9781003211129.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Arora, Pankaj Kumar, ed. Microbial Metabolism of Xenobiotic Compounds. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7462-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Günther, Winkelmann, and Carrano Carl J, eds. Transition metals in microbial metabolism. Harwood Academic Publishers, 1997.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Capitoli di libri sul tema "Microbial metabolism"

1

Spormann, Alfred M. "Microbial Energetics." In Principles of Microbial Metabolism and Metabolic Ecology. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28218-8_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Spormann, Alfred M. "Microbial Kinetics." In Principles of Microbial Metabolism and Metabolic Ecology. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28218-8_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Hahn-Hägerdal, Bärbel, and Neville Pamment. "Microbial Pentose Metabolism." In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO. Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-837-3_97.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Hausinger, Robert P. "Microbial Nickel Metabolism." In Biochemistry of Nickel. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9435-9_7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Tiquia-Arashiro, Sonia M. "Microbial CO Metabolism." In Thermophilic Carboxydotrophs and their Applications in Biotechnology. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11873-4_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wall, Judy D., Adam P. Arkin, Nurgul C. Balci, and Barbara Rapp-Giles. "Genetics and Genomics of Sulfate Respiration in Desulfovibrio." In Microbial Sulfur Metabolism. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Chan, Leong-Keat, Rachael Morgan-Kiss, and Thomas E. Hanson. "Sulfur Oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum): Genetic and Proteomic Analyses." In Microbial Sulfur Metabolism. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Stout, Jan, Lina De Smet, Bjorn Vergauwen, Savvas Savvides, and Jozef Van Beeumen. "Structural Insights into Component SoxY of the Thiosulfate-Oxidizing Multienzyme System of Chlorobaculum thiosulfatiphilum." In Microbial Sulfur Metabolism. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Friedrich, Cornelius G., Armin Quentmeier, Frank Bardischewsky, et al. "Redox Control of Chemotrophic Sulfur Oxidation of Paracoccus pantotrophus." In Microbial Sulfur Metabolism. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Kappler, Ulrike. "Bacterial Sulfite-Oxidizing Enzymes – Enzymes for Chemolithotrophs Only?" In Microbial Sulfur Metabolism. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72682-1_13.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Microbial metabolism"

1

Leach, David G., Wei Wang, Chao Yan, Dillon Mattis, Ron MacLeod, and Wei Wei. "Molecular Deep Dive into Oilfield Microbiologically Influenced Corrosion: a Detailed Case Study of MIC Failure Analysis in an Unconventional Asset." In CONFERENCE 2022. AMPP, 2022. https://doi.org/10.5006/c2022-17948.

Testo completo
Abstract (sommario):
Abstract This work details a microbiologically influenced corrosion (MIC) failure analysis case study for a produced water pipeline. A pipeline in a shale and tight asset experienced heavy corrosion and ultimate failure within a 7-month period, with estimated corrosion rate at 161 mils per year (MPY), or 4.1 mm per year (MMPY). Upon removal by the inspection team, heavy white deposit buildup (a suspected microbial biofilm) was observed directly associated with the corrosion failure on top of a black scale underlayer. Detailed assessments were performed using ATP photometry, qPCR speciation, an
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Williams, Terry M. "The Mechanism of Action of Isothiazolone Biocides." In CORROSION 2006. NACE International, 2006. https://doi.org/10.5006/c2006-06090.

Testo completo
Abstract (sommario):
Abstract Isothiazolone biocides have proven efficacy and performance for microbial control in a variety of industrial water treatment applications. Understanding the mechanism of action of industrial biocides is important in optimizing their use and combating resistance if encountered. Isothiazolones utilizes a two-step mechanism involving rapid inhibition (minutes) of growth and metabolism, followed by irreversible cell damage resulting in loss of viability (hours). Cells are inhibited by disruption of the metabolic pathways involving dehydrogenase enzymes. Critical physiological functions ar
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Mand, Jaspreet, Gerrit Voordouw, Heike Hoffmann, and Michael Horne. "Linking Sulfur Cycling and MIC in Offshore Water Transporting Pipelines." In CORROSION 2016. NACE International, 2016. https://doi.org/10.5006/c2016-07578.

Testo completo
Abstract (sommario):
Abstract Microbial activities in oil and gas operations cause souring, the production of sulfide by sulfate-reducing bacteria (SRB), and microbiologically-influenced corrosion (MIC). MIC may be especially severe in systems were several different types of fluids are mixed together, as this may provide a variety of nutrients for microbial growth. We have studied samples from an offshore production site and an onshore terminal for separation, crude oil storage, effluent treatment and disposal. We have investigated the samples using chemical analyses, culture-based microbial counts and molecular D
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Walsh, Dan, Eric Willis, Tom VanDiepen, and Jeff Sanders. "The Effect of Microstructure on Microbial Interaction with Metals - Accent Welding." In CORROSION 1994. NACE International, 1994. https://doi.org/10.5006/c1994-94612.

Testo completo
Abstract (sommario):
Abstract Microbes affect the degradation process in many ways, the relationship between microstructure and microbial interaction has often been overlooked. This is particularly true in welded structures, where the microstructure of the fusion zone and heat affected zone can create environments that support microbial metabolism. This paper will present the results of several investigations involving stainless steels, aluminum alloys, and low alloy steels. It will also address the affect of welding on MIC susceptibility in these materials. It is not meant to be a review of MIC study in general,
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Yang, Yan, Rajan Ambat, Riccardo Rizzo, and Magdalena Rogowska. "Multipronged Characterization of Scales and Corrosion on L80 Steel in the Presence of Microorganism." In CORROSION 2019. NACE International, 2019. https://doi.org/10.5006/c2019-13226.

Testo completo
Abstract (sommario):
Abstract Scale deposit and corrosion attack on the L80 steel were observed using several analytical techniques, including 3D scanning microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). This multipronged approach provided a more complete image and component of the species found on the steel surface. Cross-sectional SEM examinations showed the distribution and characteristic of scale. The results of EDS revealed that Fe, O and S were the most abundant elements in the scale layer, and the component analysis results showed that iron hy
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wei, Yixin, Tong Qiu, and Zhen Chen. "Metabolic optimization of Vibrio natriegens based on metaheuristic algorithms and the genome-scale metabolic model." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.169411.

Testo completo
Abstract (sommario):
In recent years, burgeoning interest in products derived from microbial production across various sectors has significantly propelled the evolution of the field of metabolic engineering. As a Gram-negative bacterium, Vibrio natriegens is characterized by its fast growth, robust metabolic capabilities, and a broad substrate spectrum, making it a promising candidate as a standard biological host for the industrial bioproduction of metabolites. Genome-scale metabolic models (GSMMs) are mathematical representations constructed based on genome annotations and gene-protein-reaction (GPR) association
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Ashar, Khoirun Nisa, Venty Suryanti, Abbilah Ero Mahdhani, Vicky Ahava Ferdinansyah, and Alifiananda Rahmatul Dafa Kesuma. "Utilization of <i>Escherichia coli</i> and Lapindo Mud on Microbial Fuel Cells (MFCs) System." In 8th International Conference on Advanced Material for Better Future. Trans Tech Publications Ltd, 2025. https://doi.org/10.4028/p-ozje64.

Testo completo
Abstract (sommario):
This research investigates the utilization of Escherichia coli and Lapindo mud in a two-chamber Microbial Fuel Cells (MFCs) series. MFCs are tools that convert chemical energy into electrical energy with the help of catalytic reactions from microorganisms. This research uses a dual chamber reactor connected by a salt bridge, with graphite electrodes placed in each chamber and connected by copper cables. Lapindo mud contains heavy metals, such as Cu and Pb. In small amounts, heavy metals required for maintaining various biochemical and physiological functions in living organisms, but in greater
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Amaya, Hisashi, and Hideaki Miyuki. "Laboratory Reproduction of Potential Ennoblement of Stainless Steels in Natural Seawater." In CORROSION 1999. NACE International, 1999. https://doi.org/10.5006/c1999-99168.

Testo completo
Abstract (sommario):
Abstract The localized corrosion susceptibility of stainless steels, such as type 316L, immersed in natural seawater is higher than those in synthetic seawater. It is widely observed that the corrosion potential of stainless steels in natural seawater becomes noble over +0.3V vs SCE. This phenomenon is caused by the influence of the microorganisms in the natural seawater, and therefore it is considered as Microbially Influenced Corrosion (MIC). In this paper, the laboratory reproduction of the corrosion potential ennoblement was examined on the basis of the metabolize of aerobic bacteria (pH,
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Liduino, Vitor Silva, Magali Christe Cammarota, and Eliana Flávia Camporese Sérvulo. "Electrochemically Active Biofilm on AISI 1020 Steel and Its Corrosion Potential." In LatinCORR 2023. AMPP, 2023. https://doi.org/10.5006/lac23-20888.

Testo completo
Abstract (sommario):
Electroactive biofilms provide environments conducive to the occurrence of microbiologically influenced corrosion (MIC) in several industrial sectors. There are many distinct MIC mechanisms associated with different microbial groups and metabolism types. Most published research studies on MIC focus on bacteria, where sulfate-reducing bacteria (SRB) have the largest impact on corrosion because sulfate is widely distributed in anoxic environments, such as offshore oil reservoirs. This study investigated the role of an oilfield SRB-consortium in the AISI 1020 carbon steel corrosion immersed in hy
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Xiang, Yuchen. "Research on Optimization of Microbial Metabolic Network Model and its Application in Metabolite Synthesis." In 2024 4th International Conference on Computer Science and Blockchain (CCSB). IEEE, 2024. http://dx.doi.org/10.1109/ccsb63463.2024.10735559.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Microbial metabolism"

1

McKinlay, James B. Metabolism and Evolution of a Biofuel-Producing Microbial Coculture. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1459596.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Lovley, Derek R. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1097098.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lovley, Derek R. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1055767.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Sarvaiya, Niral, and Vijay Kothari. Audible sound in form of music can influence microbial growth, metabolism, and antibiotic susceptibility. Cold Spring Harbor Laboratory, 2016. http://dx.doi.org/10.1101/044776.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Konisky, J. International Symposium on Topics in Microbial Diversity, Metabolism, and Physiology. Final report, May 22--23, 1992. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10158099.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Hofmockel, Kirsten. Microbial drivers of global change at the aggregate scale: linking genomic function to carbon metabolism and warming. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1524429.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Droby, S., J. L. Norelli, M. E. Wisniewski, S. Freilich, A. Faigenboim, and C. Dardick. Microbial networks on harvested apples and the design of antagonistic consortia to control postharvest pathogens. United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134164.bard.

Testo completo
Abstract (sommario):
We have demonstrated, at a global level, the existence of spatial variation in the fungal and bacterial composition of different fruit tissues. The composition, diversity and abundance varied in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was determined and found to be represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. To further characterize apple fruit the
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Minz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson, and Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, 2013. http://dx.doi.org/10.32747/2013.7598153.bard.

Testo completo
Abstract (sommario):
Research objectives : Identify genetic potential and community structure of soil and rhizosphere microbial community structure as affected by treated wastewater (TWW) irrigation. This objective was achieved through the examination soil and rhizosphere microbial communities of plants irrigated with fresh water (FW) and TWW. Genomic DNA extracted from soil and rhizosphere samples (Minz laboratory) was processed for DNA-based shotgun metagenome sequencing (Green laboratory). High-throughput bioinformatics was performed to compare both taxonomic and functional gene (and pathway) differences betwee
Gli stili APA, Harvard, Vancouver, ISO e altri
9

TURICK, CHARLES. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report). Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/835058.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Varga, Gabriella A., Amichai Arieli, Lawrence D. Muller, Haim Tagari, Israel Bruckental, and Yair Aharoni. Effect of Rumen Available Protein, Amimo Acids and Carbohydrates on Microbial Protein Synthesis, Amino Acid Flow and Performance of High Yielding Cows. United States Department of Agriculture, 1993. http://dx.doi.org/10.32747/1993.7568103.bard.

Testo completo
Abstract (sommario):
The effect of rumen available protein amino acids and carbohydrates on microbial protein synthesis, amino acid flow and performance of high yielding dairy cows was studied. A significant relationship between the effective degradabilities of OM in feedstuffs and the in vivo ruminal OM degradation of diets of dairy cows was found. The in situ method enabled the prediction of ruminal nutrients degradability response to processing of energy and nitragenous supplements. The AA profile of the rumen undegradable protein was modified by the processing method. In a continuous culture study total N and
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!