Articoli di riviste sul tema "Micronozzles"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Micronozzles".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Cheah, Kean How, and Jit Kai Chin. "DESIGN AND FABRICATION OF MICRONOZZLES." IIUM Engineering Journal 12, no. 1 (2011): 51–62. http://dx.doi.org/10.31436/iiumej.v12i1.65.
Testo completoHaris, P. A., and T. Ramesh. "Numerical Simulation of Superheated Steam Flow in a Micronozzle." Applied Mechanics and Materials 592-594 (July 2014): 1677–81. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1677.
Testo completoGerasimov*, A. P., A. V. Krasavin, and I. A. Bykov. "Micronozzle Comparator for Calibration (Verification) of Critical Micronozzles." Measurement Techniques 57, no. 3 (2014): 294–99. http://dx.doi.org/10.1007/s11018-014-0448-6.
Testo completoLi, Xiao Ping, Wei Zheng Yuan, Qiang Shen, Jian Bing Xie, and Hong Long Chang. "Interaction Effects of Micronozzle Geometric Parameters on Propulsion Performance." Key Engineering Materials 609-610 (April 2014): 734–39. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.734.
Testo completoGubanov, D. A., S. G. Kundasev, and L. P. Trubitsyna. "Influence of Different Configurations of Microjet Injection on Structure and Acoustic Radiation of Supersonic Jet." Siberian Journal of Physics 14, no. 2 (2019): 56–76. http://dx.doi.org/10.25205/2541-9447-2019-14-2-56-76.
Testo completoLouisos, W. F., A. A. Alexeenko, D. L. Hitt, and A. Zilic. "Design considerations for supersonic micronozzles." International Journal of Manufacturing Research 3, no. 1 (2008): 80. http://dx.doi.org/10.1504/ijmr.2008.016453.
Testo completoRainchik, S. V. "System for calibrating critical micronozzles." Measurement Techniques 29, no. 1 (1986): 10–12. http://dx.doi.org/10.1007/bf00862467.
Testo completoGroper, Emily R., Jack A. Barnes, Rory McEwen, Younès Messaddeq, Richard D. Oleschuk, and Hans-Peter Loock. "Fabrication and characterization of laser-heated, multiplexed electrospray emitter." Analyst 146, no. 9 (2021): 2834–41. http://dx.doi.org/10.1039/d1an00264c.
Testo completoSilva, S., M. C. Salvadori, K. Kawakita, M. T. Pereira, W. Rossi, and M. Cattani. "Fabrication of diamond flow controller micronozzles." Diamond and Related Materials 11, no. 2 (2002): 237–41. http://dx.doi.org/10.1016/s0925-9635(01)00693-8.
Testo completoWang, Yunxia, Yong Zhang, Zheng Qiao, and Wanjun Wang. "A 3D Printed Jet Mixer for Centrifugal Microfluidic Platforms." Micromachines 11, no. 7 (2020): 695. http://dx.doi.org/10.3390/mi11070695.
Testo completoPearl, J. M., W. F. Louisos, and D. L. Hitt. "Thrust Calculation for Low-Reynolds-Number Micronozzles." Journal of Spacecraft and Rockets 54, no. 1 (2017): 287–98. http://dx.doi.org/10.2514/1.a33535.
Testo completoLouisos, William F., and Darren L. Hitt. "Analysis of Transient Flow in Supersonic Micronozzles." Journal of Spacecraft and Rockets 48, no. 2 (2011): 303–11. http://dx.doi.org/10.2514/1.51027.
Testo completoMammana, S. S., M. C. Salvadori, K. Kawakita, M. T. Pereira, and M. Cattani. "Characterization of diamond sonic micronozzles and microtube." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, no. 5 (2003): 2034. http://dx.doi.org/10.1116/1.1603287.
Testo completoHuang, C., J. W. Gregory, and J. P. Sullivan. "Flow visualization and pressure measurement in micronozzles." Journal of Visualization 10, no. 3 (2007): 281–88. http://dx.doi.org/10.1007/bf03181695.
Testo completoGreenfield, B., W. F. Louisos, and D. L. Hitt. "Impact of Dilute Multiphase Flow in Supersonic Micronozzles." Journal of Spacecraft and Rockets 56, no. 1 (2019): 190–99. http://dx.doi.org/10.2514/1.a34215.
Testo completoStein, William B., and Alina A. Alexeenko. "Plug-Annular Micronozzles: A New Prospect for Microthrusters." Journal of Propulsion and Power 27, no. 6 (2011): 1259–65. http://dx.doi.org/10.2514/1.b34043.
Testo completoRybdylova, Oyuna, Natalya Lebedeva, Alexey Kudryavtsev, and Anton Shershnev. "Aerodynamic focusing of inertial particles in supersonic micronozzles." PAMM 13, no. 1 (2013): 503–4. http://dx.doi.org/10.1002/pamm.201310244.
Testo completoDe Giorgi, Maria Grazia, Donato Fontanarosa, and Antonio Ficarella. "Comparison of numerical predictions of the supersonic expansion inside micronozzles of micro–resistojets." MATEC Web of Conferences 304 (2019): 02012. http://dx.doi.org/10.1051/matecconf/201930402012.
Testo completoLouisos, William F., and Darren L. Hitt. "Numerical Studies of Supersonic Flow in Bell-Shaped Micronozzles." Journal of Spacecraft and Rockets 51, no. 2 (2014): 491–500. http://dx.doi.org/10.2514/1.a32508.
Testo completoLouisos, W. F., and D. L. Hitt. "Viscous Effects on Performance of Three-Dimensional Supersonic Micronozzles." Journal of Spacecraft and Rockets 49, no. 1 (2012): 51–58. http://dx.doi.org/10.2514/1.53026.
Testo completoMenzies, R. D. D., B. E. Richards, K. J. Badcock, J. Loseken, and M. Kahl. "Computational Investigation of Three-Dimensional Flow Effects on Micronozzles." Journal of Spacecraft and Rockets 39, no. 4 (2002): 642–44. http://dx.doi.org/10.2514/2.3857.
Testo completoRubio, A., V. Faustino, M. G. Cabezas, R. Lima, and E. J. Vega. "Fire-shaped cylindrical glass micronozzles to measure cell deformability." Journal of Micromechanics and Microengineering 29, no. 10 (2019): 105001. http://dx.doi.org/10.1088/1361-6439/ab3183.
Testo completoLouisos, William F., and Darren L. Hitt. "Viscous Effects on Performance of Two-Dimensional Supersonic Linear Micronozzles." Journal of Spacecraft and Rockets 45, no. 4 (2008): 706–15. http://dx.doi.org/10.2514/1.33434.
Testo completoTorre, Federico La, Sasa Kenjeres, Chris R. Kleijn, and Jean-Luc P. A. Moerel. "Effects of Wavy Surface Roughness on the Performance of Micronozzles." Journal of Propulsion and Power 26, no. 4 (2010): 655–62. http://dx.doi.org/10.2514/1.44828.
Testo completoKudryavtsev, Alexey, Anton Shershnev, and Oyuna Rybdylova. "Numerical simulation of aerodynamic focusing of particles in supersonic micronozzles." International Journal of Multiphase Flow 114 (May 2019): 207–18. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.03.009.
Testo completoFujita, Hiroyuki, Manabu Ataka, and Satoshi Konishi. "Group work of distributed microactuators." Robotica 14, no. 5 (1996): 487–92. http://dx.doi.org/10.1017/s0263574700019962.
Testo completoMammana, S. S., F. T. Degasperi, M. C. Salvadori, et al. "Critical parameter determination of sonic flow controller diamond microtubes and micronozzles." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, no. 6 (2007): 1804. http://dx.doi.org/10.1116/1.2790924.
Testo completoLehnert, T., M. A. M. Gijs, R. Netzer, and U. Bischoff. "Realization of hollow SiO2 micronozzles for electrical measurements on living cells." Applied Physics Letters 81, no. 26 (2002): 5063–65. http://dx.doi.org/10.1063/1.1528292.
Testo completoKo, Yong-jun, Seung-Mo Ha, Hyun-joong Kim, Dong-Ho Lee, and Yoomin Ahn. "P-36 Development of PDMS-glass hybrid microchannel mixer composed of micropillars and micronozzles." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2007.6 (2007): _P—36–1_—_P—36–5_. http://dx.doi.org/10.1299/jsmeatem.2007.6._p-36-1_.
Testo completoLee, Wah-Keat, Kamel Fezzaa, and Jin Wang. "Metrology of steel micronozzles using x-ray propagation-based phase-enhanced microimaging." Applied Physics Letters 87, no. 8 (2005): 084105. http://dx.doi.org/10.1063/1.2034099.
Testo completoGusinskii, G. M., S. V. Baryshev, A. V. Nashchekin, D. A. Sakseev, V. O. Naidenov, and S. G. Konnikov. "Track technology for creating the arrays of nickel microtips, micronozzles, and microtubes." Technical Physics Letters 35, no. 7 (2009): 678–79. http://dx.doi.org/10.1134/s1063785009070268.
Testo completoCai, Yukui, Zhanqiang Liu, Qinghua Song, Zhenyu Shi, and Yi Wan. "Fluid mechanics of internal flow with friction and cutting strategies for micronozzles." International Journal of Mechanical Sciences 100 (September 2015): 41–49. http://dx.doi.org/10.1016/j.ijmecsci.2015.06.011.
Testo completoLi, Sheng, Carl B. Freidhoff, Robert M. Young, and Reza Ghodssi. "Fabrication of micronozzles using low-temperature wafer-level bonding with SU-8." Journal of Micromechanics and Microengineering 13, no. 5 (2003): 732–38. http://dx.doi.org/10.1088/0960-1317/13/5/328.
Testo completoReichmann, Felix, Alexander Tollkötter, Sarah Körner, and Norbert Kockmann. "Gas-liquid dispersion in micronozzles and microreactor design for high interfacial area." Chemical Engineering Science 169 (September 2017): 151–63. http://dx.doi.org/10.1016/j.ces.2016.10.028.
Testo completoReichmann, Felix, Fabian Varel, and Norbert Kockmann. "Energy Optimization of Gas–Liquid Dispersion in Micronozzles Assisted by Design of Experiment." Processes 5, no. 4 (2017): 57. http://dx.doi.org/10.3390/pr5040057.
Testo completoWiederkehr, R. S., M. C. Salvadori, F. T. Degasperi, and M. Cattani. "Development of microvalves for gas flow control in micronozzles using PVDF piezoelectric polymer." Journal of Physics: Conference Series 100, no. 5 (2008): 052046. http://dx.doi.org/10.1088/1742-6596/100/5/052046.
Testo completoKO, Yong-Jun, Seung-Mo HA, Hyun-Joong KIM, Dong-Ho LEE, and Yoomin AHN. "Development of a PDMS-Glass Hybrid Microchannel Mixer Composed of Micropillars and Micronozzles." Journal of Solid Mechanics and Materials Engineering 2, no. 4 (2008): 445–54. http://dx.doi.org/10.1299/jmmp.2.445.
Testo completoSabouri, Moslem, and Masoud Darbandi. "Numerical study of species separation in rarefied gas mixture flow through micronozzles using DSMC." Physics of Fluids 31, no. 4 (2019): 042004. http://dx.doi.org/10.1063/1.5083807.
Testo completoHsieh, Shou-Shing, and Wei-Che Chang. "Microspray quenching on nanotextured surfaces via a piezoelectric atomizer with multiple arrays of micronozzles." International Journal of Heat and Mass Transfer 121 (June 2018): 832–44. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.01.044.
Testo completoEgashira, Kai, Kenichi Kuriyama, Keishi Yamaguchi, and Minoru Ota. "Drilling of Rod End Faces Using Micro-Cutting Tools." Materials Science Forum 874 (October 2016): 227–31. http://dx.doi.org/10.4028/www.scientific.net/msf.874.227.
Testo completoMoon, Seoksu, Weidi Huang, and Jin Wang. "First observation and characterization of vortex flow in steel micronozzles for high-pressure diesel injection." Experimental Thermal and Fluid Science 105 (July 2019): 342–48. http://dx.doi.org/10.1016/j.expthermflusci.2019.04.018.
Testo completoAmon, Cristina H., S. C. Yao, C. F. Wu, and C. C. Hsieh. "Microelectromechanical System-Based Evaporative Thermal Management of High Heat Flux Electronics." Journal of Heat Transfer 127, no. 1 (2005): 66–75. http://dx.doi.org/10.1115/1.1839586.
Testo completoYoon, Yong-Kyu, Jung-Hwan Park, Jeong-Woo Lee, Mark R. Prausnitz, and Mark G. Allen. "A thermal microjet system with tapered micronozzles fabricated by inclined UV lithography for transdermal drug delivery." Journal of Micromechanics and Microengineering 21, no. 2 (2011): 025014. http://dx.doi.org/10.1088/0960-1317/21/2/025014.
Testo completoPalmer, Kristoffer, Ernesto Vargas Catalan, Ville Lekholm, and Greger Thornell. "Investigation of exhausts from fabricated silicon micronozzles with rectangular and close to rotationally symmetric cross-sections." Journal of Micromechanics and Microengineering 23, no. 10 (2013): 105001. http://dx.doi.org/10.1088/0960-1317/23/10/105001.
Testo completoHsieh, Shou-Shing, Yi-Fan Yeh, and Yi-Fang Li. "Microspray flow/thermal characteristics via a micro-piezoelectric atomizer with single and multiple arrays of micronozzles." Experimental Thermal and Fluid Science 93 (May 2018): 96–107. http://dx.doi.org/10.1016/j.expthermflusci.2017.12.023.
Testo completoGiorgi, Maria Grazia De, Donato Fontanarosa, and Antonio Ficarella. "Modeling viscous effects on boundary layer of rarefied gas flows inside micronozzles in the slip regime condition." Energy Procedia 148 (August 2018): 838–45. http://dx.doi.org/10.1016/j.egypro.2018.08.113.
Testo completoSebastião, Israel B., and Wilson F. N. Santos. "Numerical simulation of heat transfer and pressure distributions in micronozzles with surface discontinuities on the divergent contour." Computers & Fluids 92 (March 2014): 125–37. http://dx.doi.org/10.1016/j.compfluid.2013.12.023.
Testo completoLi, Wenming, Tamanna Alam, Fanghao Yang, et al. "Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (II): Enhanced CHF and reduced pressure drop." International Journal of Heat and Mass Transfer 115 (December 2017): 264–72. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.08.032.
Testo completoLi, Wenming, Fanghao Yang, Tamanna Alam, et al. "Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (I): Characterizations of flow boiling heat transfer." International Journal of Heat and Mass Transfer 116 (January 2018): 208–17. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.09.009.
Testo completoVanEe, Gary, Richard Ledebuhr, Eric Hanson, Jim Hancock, and Donald C. Ramsdell. "Canopy Development and Spray Deposition in Highbush Blueberry." HortTechnology 10, no. 2 (2000): 353–59. http://dx.doi.org/10.21273/horttech.10.2.353.
Testo completo