Letteratura scientifica selezionata sul tema "Mouse xenograft model"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Mouse xenograft model".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Mouse xenograft model"
Zhang, Yanmei, Sau Har Lee, Cheng Wang, Yunhe Gao, Jiyang Li e Wei Xu. "Establishing metastatic patient-derived xenograft model for colorectal cancer". Japanese Journal of Clinical Oncology 50, n. 10 (24 giugno 2020): 1108–16. http://dx.doi.org/10.1093/jjco/hyaa089.
Testo completoKomen, Job, Sanne M. van Neerven, Elsbeth G. B. M. Bossink, Nina E. de Groot, Lisanne E. Nijman, Albert van den Berg, Louis Vermeulen e Andries D. van der Meer. "The Effect of Dynamic, In Vivo-like Oxaliplatin on HCT116 Spheroids in a Cancer-on-Chip Model Is Representative of the Response in Xenografts". Micromachines 13, n. 5 (6 maggio 2022): 739. http://dx.doi.org/10.3390/mi13050739.
Testo completoWang, Zhijie, Jianglong Kong, Ziteng Chen, Meiru Mao, Jiacheng Li, Hui Yuan, Ya-nan Chang, Kui Chen e Juan Li. "Human Glioma Nude Mouse Xenograft Model in situ". Diseases & Research 1, n. 1 (4 novembre 2021): 1–5. http://dx.doi.org/10.54457/dr.202101003.
Testo completoSari, Gulce, Gertine W. van Oord, Martijn D. B. van de Garde, Jolanda J. C. Voermans, Andre Boonstra e Thomas Vanwolleghem. "Sexual Dimorphism in Hepatocyte Xenograft Models". Cell Transplantation 30 (1 gennaio 2021): 096368972110061. http://dx.doi.org/10.1177/09636897211006132.
Testo completoPascoal, Susana, Benjamin Salzer, Eva Scheuringer, Andrea Wenninger-Weinzierl, Caterina Sturtzel, Wolfgang Holter, Sabine Taschner-Mandl, Manfred Lehner e Martin Distel. "A Preclinical Embryonic Zebrafish Xenograft Model to Investigate CAR T Cells in Vivo". Cancers 12, n. 3 (29 febbraio 2020): 567. http://dx.doi.org/10.3390/cancers12030567.
Testo completoDavies, Jason M., Aaron E. Robinson, Cynthia Cowdrey, Praveen V. Mummaneni, Gregory S. Ducker, Kevan M. Shokat, Andrew Bollen, Byron Hann e Joanna J. Phillips. "Generation of a patient-derived chordoma xenograft and characterization of the phosphoproteome in a recurrent chordoma". Journal of Neurosurgery 120, n. 2 (febbraio 2014): 331–36. http://dx.doi.org/10.3171/2013.10.jns13598.
Testo completoHoney, Christopher R., Modestus O. K. Obochi, Hao Shen, Philippe Margaron, Stephen Yip e Julia G. Levy. "Reduced xenograft rejection in rat striatum after pretransplant photodynamic therapy of murine neural xenografts". Journal of Neurosurgery 92, n. 1 (gennaio 2000): 127–31. http://dx.doi.org/10.3171/jns.2000.92.1.0127.
Testo completoHayakawa, Jun, Matthew Hsieh, Naoya Uchida, Kareem Washington, Oswald Phang, David Eric Anderson e John Tisdale. "A Practical Erythroid Assay in Humanized Xenograft Mouse Model". Blood 112, n. 11 (16 novembre 2008): 2446. http://dx.doi.org/10.1182/blood.v112.11.2446.2446.
Testo completoFrees, S., I. Moskalev, P. Raven, N. D’Costa, Z. Tan, W. Struss, C. Chavez-Munoz e A. So. "Orthotopic sunitinib resistant renal cell carcinoma xenograft mouse model". European Urology Supplements 16, n. 3 (marzo 2017): e1477. http://dx.doi.org/10.1016/s1569-9056(17)30898-9.
Testo completoThaler, Sonja, Angelika M. Burger, Thomas Schulz, Boris Brill, Alexandra Bittner, Patrick A. Oberholzer, Reinhard Dummer e Barbara S. Schnierle. "Establishment of a mouse xenograft model for mycosis fungoides". Experimental Dermatology 13, n. 7 (luglio 2004): 406–12. http://dx.doi.org/10.1111/j.0906-6705.2004.00201.x.
Testo completoTesi sul tema "Mouse xenograft model"
Linder, Keith Emerson. "Development and application of the skin xenograft mouse model to study host resistance to Demodex canis". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ56286.pdf.
Testo completoTanaka, Kuniaki. "Direct Delivery of piggyBac CD19 CAR T Cells Has Potent Anti-tumor Activity against ALL Cells in CNS in a Xenograft Mouse Model". Kyoto University, 2021. http://hdl.handle.net/2433/261609.
Testo completoKok, Cornelius Wilhelmus. "Molecular characterization of human vaginal mucosa obtained from fresh harvest and implants in an experimental nude mouse model". Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6879.
Testo completoENGLISH ABSTRACT: The present study investigated in particularly the specific nature of the supporting stromal layer located between the implanted human cyst and host murine tissue, which has yet to be reported. During an initial phase of this study, the particular light microscopic properties of the existing hematoxylin and eosin (H&E) stained experimental cyst was investigated, with regards to the presence or absence of specific morphological features, namely spongiosis, exocytosis, epithelial keratinization, epithelial thickness and hyperplasia, and the vascularity and fibrosis present in the stroma of these experimental sections. Subsequent analysis reported significant spongiosis, in addition to increased exocytosis of immune cells and epithelial keratinization in a number of cysts. Additionally, increased epithelial thickness and hyperplasia was reported in only 2 / 10 experimental tissues, whereas increased vascularity was observed in the stroma following analysis of H&E and Special staining, such as Verhoeff-von Gieson and Masson trichrome results. During the second phase of the study, immunohistochemical analysis with a particularly wide array of antibodies raised against specific human and mouse antigens had been applied. This involved automated immunohistochemical staining with mouse anti-human primary antibodies, in addition to manual staining with rabbit anti-mouse primary antibodies. Subsequent visualization was achieved by means of linking to biotinylated secondary antibodies, and Streptavidin-HRP incubation for standard visualization, followed by counterstaining with Hematoxylin. Maintained positive expression of cytokeratins 5, 13, and 14 was demonstrated in both control human vaginal mucosa and experimental cysts, whereas similar findings were not reported for cytokeratin 1, given the vast keratinization which was observed. Human collagen type IV and laminin of the basement membrane reported positive expression in 9 / 10 and 6 / 10 control human vaginal mucosa tissues respectively. In comparison, negative mouse collagen type IV and laminin was reported in most experimental cysts compared to positive staining in positive control mouse tissues. Immunohistochemical staining for human elastin, fibronectin, von Willebrand factor, and fibroblasts revealed maintained positive staining in all control human vaginal mucosa and experimental cysts. However, maintained expression of CD34 (endothelial marker), CD1a (langerhans cells), and human VEGFR-3 in experimental cysts was not demonstrated, compared to positive expression in control human vaginal mucosa. Subsequent analysis of murine antigens illustrated uniformly negative staining for mouse fibronectin, langerhans cells (CD207), and fibroblasts, in addition to negative staining in positive control mouse tissue sections. Furthermore, negative staining for mouse VEGFR-2 was reported in all experimental cysts; however strong positive staining of this marker in mouse kidney tissue had been reported. The findings of this study suggested that the exact nature of the stromal layer is of both human and murine origin. Furthermore, the tissue region located beneath the human vaginal epithelium is suggested to be of human nature, whereas the second distinct region located at the periphery of experimental cyst tissues, is suggested to be murine origin; however the findings of immunohistochemical analysis could not illustrate definitively the exact nature of the intermediate stromal layer, but could in fact demonstrate a mixture of human and murine tissue.
AFRIKAANSE OPSOMMING: Die huidige studie het die spesifieke molekulêre en histologiese eienskappe van die stromale laag geleë tussen menslike sist- en muis velweefsel bestudeer, wat tans nog nie bekend is nie. Gedurende die eerste fase van hierdie studie is die besondere lig-mikroskopiese eienskappe van die bestaande hematoksilien en eosien (H&E) eksperimentele siste bestudeer, met betrekking tot die aan- of afwesigheid van spesifieke morfologiese eienskappe, naamlik spongiose, eksositose van immuunselle, epiteel keratinisasie, epiteel dikte en hiperplasie, en laastens die stromale vaskulariteit en fibrose. Gevolglike analise het daarop gedui dat beduidende spongiose, eksositose en epiteel keratinisasie gevind word in die eksperimentele siste in vergelyking met kontrole vaginal weefsel. Hierteenoor is die verdikking van die epiteel en hiperplasie in slegs 2 / 10 eksperimentele siste gevind, terwyl vermeerderde vaskulariteit aangedui is na gevolglike H&E en spesiale (soos byvoorbeeld Verhoeff-von Gieson en Masson trichrome) kleuringsresultate. Die tweede fase van die studie het die immunokleuring met verskeie mens- en muis spesifieke antiliggame behels, waarby die uitdrukking van verskeie mens antigene vergelyk is met dié van muis. As sulks is ge-automatiseerde immunohistochemie toegepas met muis primêre antiliggame, tesame met fisiese kleuring met konyn primêre antiliggame toegepas. Gevolglike visualisasie is aangedui deur middel van binding met sekondêre antiliggaam en Streptavidin- HRP, gevolg deur teenkleuring met Hematoksilien. Algehele behoud van positiewe uitdrukking van sitokeratien 5, 13, en 14 is bevind, terwyl sitokeratien 1 uitdrukking nie daarwerklik vergelykbaar is met dié van kontrole mens vaginale weefsel nie. Die uitdrukking van mens kollageen IV en laminien van die basaal membraan is verder bestudeer, en het egter positiewe kleuring in 9 / 10 en 6 / 10 van kontrole mens vaginale mukosa aangedui. In vergelykking hiermee kon die huidige bevindings egter net positiewe kleuring in 4 / 10 en 3 / 10 eksperimentele siste vir kollageen IV en laminien onderskeidelik, illustreer. Immunohistochemiese analise van menslike elastien, fibronektien, von Willebrand (vW) faktor en fibroblaste het op deurgaans positiewe uitdrukking van hierdie merkers aangedui in beide eksperimentele en kontrole menslike weefsel. In teenstelling hiermee is volgehoue uitdrukking van CD34 (endoteel merker), CD1a (Langerhans sel merker) en mens VEGFR-3 in ekperimentele siste egter nie illustreerbaar nie, in vergelykking met deurgaans positiewe uitdrukking van hierdie antigene in kontrole mens vaginale mukosa. In opvolging is deurgaans negatiewe uitdrukking van muis fibronektien, langerhans sel (CD207) en fibroblaste bevestig, terwyl negatiewe kleuring ook deurgaans in positiwe kontrole muis weefsel, bekom deur die disseksie van ‘n naakte muis, gevind is. Verder is ook negatiewe kleuring vir VEGFR-2 in alle eksperimentele siste gevind, terwyl egter sterk positiewe kleuring in muis nierweefsel as positiewe weefsel gevind is. Die resultate van die huidige studie het daarop gedui dat die stromale laag onderliggend tot mens vaginale epiteel van menslike oorsprong is, terwyl die periferale stroma onderliggend tot muis velweefsel, ongetwyfeld van muis oorsprong is. Laastens kon die spesifieke oorsprong van die tussenliggende stroma nie aangedui word nie, maar dat dit moontlik uit beide menslike- en muisweefsel bestaan.
Hübner, Doreen, Christiane Rieger, Ralf Bergmann, Martin Ullrich, Sebastian Meister, Marieta Toma, Ralf Wiedemuth et al. "An orthotopic xenograft model for high-risk non-muscle invasive bladder cancer in mice: influence of mouse strain, tumor cell count, dwell time and bladder pretreatment". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-231536.
Testo completoHübner, Doreen, Christiane Rieger, Ralf Bergmann, Martin Ullrich, Sebastian Meister, Marieta Toma, Ralf Wiedemuth et al. "An orthotopic xenograft model for high-risk non-muscle invasive bladder cancer in mice: influence of mouse strain, tumor cell count, dwell time and bladder pretreatment". BioMed Central, 2017. https://tud.qucosa.de/id/qucosa%3A30688.
Testo completoSchmidt, Anna Christina Verfasser], e Udo [Akademischer Betreuer] [Schumacher. "E- and P-selectins are essential for repopulation of chronic myelogenous and chronic eosinophilic leukemias in a scid mouse xenograft model / Anna Christina Schmidt. Betreuer: Udo Schumacher". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2015. http://d-nb.info/1068316608/34.
Testo completoDevaud, Christel. "Etude in vivo du potentiel anti-tumoral des lymphocytes Tγδ Vδ2 négatifs humains dans un modèle murin". Thesis, Bordeaux 2, 2009. http://www.theses.fr/2009BOR21684/document.
Testo completoGamma delta (?d) T lymphocytes contribute to host immune competence uniquely especially during stress immune responses to infections and tumors. Because ?d T cells colonize epithelial surfaces, where they can exert rapid and pleiotropic effector functions, they are critical protagonists in anti-cancer response. During my Phd project we explored the anti-tumor potential of Vd2 negatives (neg) ?d T lymphocytes, in vivo using a mouse xenograft tumor model. A few years ago, studies in our laboratory showed an increase of peripheral blood Vd2neg ?d T lymphocytes in allograft recipients infected by cytomegalovirus (CMV). Interestingly, Vd2neg ?d T clones isolated from these patients showed a cytotoxic activity against CMV infected fibroblast in vitro. Moreover, they were able to kill colon cancer cells (HT29) in vitro, in contrast to normal epithelial cells. Cancer cell- as well as CMV infected cell- killing involved T cell receptor (TCR) engagement, independently of major histocompatibility complex (CMH) recognition, probably with a common ligand. The first part of my Phd project was undertaken to evaluate the in vivo tumor reactivity of anti-CMV Vd2neg clones, including their ability to inhibit tumor growth as well as their migratory potential toward colon cancer cells. In immunodeficient mice, we showed that systemic intraperitoneal (i.p) injections with human Vd2neg clones inhibited the growth of HT29 hypodermal tumors xenografts. Furthermore, our results demonstrated that Vd2neg T cells had an early and specific anti-tumor effect, and that such activity could be hampered in vivo using an anti-CCR3 antibody. Our study suggest that Vd2neg T cells with an anti-viral potential are able to reach a tumor site in vivo, and inhibit tumoral growth exercising a cytolytic activity. The second part of my Phd project proposed to get further insights on the role of Vd2neg T cells in the immune surveillance against colon cancer. To this aim, we tested, the involvement of human Vd1+ T lymphocytes, a substantial fraction of T cells in intestinal epithelia, in limiting tumor spread in vivo, using a mouse model of colorectal carcinoma (CRC). We sat up a physiological mouse model of CRC by orthotopic microinjection of HT29 colon cell, which mimics the natural history of human CRC. Indeed, primary colic tumors and pulmonary and hepatic distant metastases grew in mice. Furthermore, bioluminescence imaging was used to follow the outcome of luciferase expressing cancer cells. We showed that systemic treatment with human Vd1+ T lymphocytes could inhibit the growth of intracaecal HT29 tumors and led a substantial reduction of distant metastases. Our results are the first arguing for a crucial role of ?d T cells against CRC, specially in preventing the dissemination of colon cancer cells. Taken together, our results underline the role of of ?d T cells in theimmune response against colorectal cancer. Our findings put forward Vd2neg T cells as attractive candidates for novel anti-tumor immunotherapy protocols
Lämmer, Friederike [Verfasser], e Kaspar [Akademischer Betreuer] Matiasek. "Impact of aldehyde Dehydrogenase isotypes on xenograft and syngeneic mouse models of human primary glioblastoma multiforme / Friederike Lämmer. Betreuer: Kaspar Matiasek". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1093122129/34.
Testo completoEbinger, Sarah [Verfasser], e Dirk [Akademischer Betreuer] Eick. "Characterization of dormant and drug resistant stem cells using xenograft mouse models of patient-derived acute leukemia cells / Sarah Ebinger ; Betreuer: Dirk Eick". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1155097602/34.
Testo completoCahill, Fiona. "The role of LKB1 (STK11) in non-small cell lung cancer". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:a3162d1b-96d3-4420-82eb-e261c9732f33.
Testo completoLibri sul tema "Mouse xenograft model"
Hoffman, Robert M. Patient-Derived Mouse Models of Cancer: Patient-Derived Orthotopic Xenografts. Humana, 2017.
Cerca il testo completoHoffman, Robert M. Patient-Derived Mouse Models of Cancer: Patient-Derived Orthotopic Xenografts. Springer International Publishing AG, 2018.
Cerca il testo completoCapitoli di libri sul tema "Mouse xenograft model"
Hassan, Md Sazzad, e Urs von Holzen. "Animal Model: Xenograft Mouse Models in Esophageal Adenocarcinoma". In Methods in Molecular Biology, 151–64. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7734-5_14.
Testo completoZhu, Qing, e Amy J. Weiner. "A Hepatitis C Virus Xenograft Mouse Efficacy Model". In Methods in Molecular Biology, 323–31. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-447-6_14.
Testo completoZhu, Xuguang, e Sheue-Yann Cheng. "Analysis of Thyroid Tumorigenesis in Xenograft Mouse Model". In Methods in Molecular Biology, 207–23. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7902-8_17.
Testo completoYu, Valen Z., Joseph C. Y. Ip, Josephine M. Y. Ko, Lihua Tao, Alfred K. Lam e Maria L. Lung. "Orthotopic Xenograft Mouse Model in Esophageal Squamous Cell Carcinoma". In Methods in Molecular Biology, 149–60. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0377-2_12.
Testo completoHermanson, David L., Laura Bendzick e Dan S. Kaufman. "Mouse Xenograft Model for Intraperitoneal Administration of NK Cell Immunotherapy for Ovarian Cancer". In Natural Killer Cells, 277–84. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3684-7_23.
Testo completoMallesch, Julia L., Dino Chiaraviglio, Barry J. Allen e Douglas E. Moore. "An Intra-Pancreatic and Hepatic Nude Mouse Cancer Xenograft Model for Boron Neutron Capture Therapy". In Advances in Neutron Capture Therapy, 547–50. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2978-1_110.
Testo completoLiu, Yongtao. "Changes in the Urinary Proteome in a Patient-Derived Xenograft (PDX) Nude Mouse Model of Colorectal Tumor". In Urine, 105–17. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9109-5_11.
Testo completoGreen, Colin, Hakim Djeha, Gail Rowlinson-Busza, Christina Kousparou e Agamemnon A. Epenetos. "Xenograft Mouse Models for Tumour Targeting". In Antibody Engineering, 463–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01147-4_35.
Testo completoSharma, Surinder K., e R. Barbara Pedley. "Xenograft Mouse Models for Tumour Targeting". In Antibody Engineering, 477–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01147-4_36.
Testo completoRowlinson-Busza, Gail, Julie Cook e Agamemnon A. Epenetos. "Xenograft Mouse Models for Tumour Targeting". In Antibody Engineering, 498–512. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04605-0_36.
Testo completoAtti di convegni sul tema "Mouse xenograft model"
Yan, Ying, Tengfei Yu, Wei Du, Guosheng Tong, Yuefei Yang, Tingting Tan, Xuqin Yang et al. "Abstract 1210: A patient derived xenograft tumor model platform for “mouse trials”". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1210.
Testo completoTilan, Jason U., Sung-Hyeok Hong, Susana Galli, Rachel Acree, Katherine Connors, Meredith Horton, Akanksha Mahajan et al. "Abstract 2478: Tumor hypoxia promotes Ewing sarcoma metastases in a mouse xenograft model". In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-2478.
Testo completoPernice, Tiziana, Alan Bishop, Oscar Cataluña, Mandy Palomares, Raquel Lopez, Práxedes Núñez, Carmen Cuevas, Maria José Guillén e Pablo M. Aviles. "Abstract 4654: Plasma, tissue and tumor pharmacokinetics of PM060184 in NSCL xenograft mouse model". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4654.
Testo completoGeorge, Jasmine, Minakshi Nihal, Mary A. Ndiaye e Nihal Ahmad. "Abstract 1143: Pro-proliferative function of SIRT3 in a human melanoma xenograft mouse model". In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-1143.
Testo completoDevarajan, Asokan, Feng Su, Dawoud Sulaiman, Dorothy Nguyen, Robin Farias-Eisner e Srinivasa T. Reddy. "Abstract 1472: Paraoxonase 3 is a novel tumor suppressor protein in xenograft mouse model". In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-1472.
Testo completoLewis, Valerae O., Eswaran Devarajan e Dennis PM Hughes. "Abstract 1261: Targeting IL-11Rα inhibits osteosarcoma pulmonary metastasis in an orthotopic xenograft mouse model". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1261.
Testo completoTakada, Marilia, Lauren Smyth e Vilma Yuzbasiyan-Gurkan. "Abstract 2166: Dasatinib displays antitumor efficacy in an orthotopic xenograft mouse model of histiocytic sarcoma". In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2166.
Testo completoPeng, Xianghong, Megan A. Mackey, Adegboyega Oyelere, Jun Zhang, Georgia Chen, Shuming Nie, Mostafa A. El-Sayed e Dong M. Shin. "Abstract 5383: The plasmonic photothermal therapy efficacy of Au NRsin vivousing a SCCHN xenograft mouse model". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5383.
Testo completoGarcia, Patrick L., Tracy Gamblin, Leona N. Council, John D. Christein, Martin J. Heslin, Joseph Richardson e Karina J. Yoon. "Abstract 2725: Establishment of the primary human tumor xenograft (tumorgraft) mouse model of pancreatic ductal adenocarcinoma." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-2725.
Testo completoHassan, Md Sazzad, Niranjan Awasthi, Roderich E. Schwarz, Margaret A. Schwarz e Urs von Holzen. "Abstract 2826: A novel intraperitoneal metastatic xenograft mouse model for survival outcome assessment of esophageal adenocarcinoma". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2826.
Testo completoRapporti di organizzazioni sul tema "Mouse xenograft model"
Weisberg, Tracey F. The Role of Growth Hormone and Insulin-Like Growth Factor-1 in Human Breast Cancer Growth in a Mouse Xenograft Model. Fort Belvoir, VA: Defense Technical Information Center, ottobre 1999. http://dx.doi.org/10.21236/ada391179.
Testo completo