Letteratura scientifica selezionata sul tema "Multi-Modal Imaging Techniques"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Multi-Modal Imaging Techniques".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Multi-Modal Imaging Techniques"
Dumbryte, Irma, Donatas Narbutis, Maria Androulidaki, Arturas Vailionis, Saulius Juodkazis e Mangirdas Malinauskas. "Teeth Microcracks Research: Towards Multi-Modal Imaging". Bioengineering 10, n. 12 (25 novembre 2023): 1354. http://dx.doi.org/10.3390/bioengineering10121354.
Testo completoAdil Ibrahim Khalil. "Multi-Modal Fusion Techniques for Improved Diagnosis in Medical Imaging". Journal of Information Systems Engineering and Management 10, n. 1s (28 dicembre 2024): 47–56. https://doi.org/10.52783/jisem.v10i1s.100.
Testo completoLiu, Tracy W., Seth T. Gammon, David Fuentes e David Piwnica-Worms. "Multi-Modal Multi-Spectral Intravital Macroscopic Imaging of Signaling Dynamics in Real Time during Tumor–Immune Interactions". Cells 10, n. 3 (25 febbraio 2021): 489. http://dx.doi.org/10.3390/cells10030489.
Testo completoZhang, Yilin. "Multi-Modal Medical Image Matching Based on Multi-Task Learning and Semantic-Enhanced Cross-Modal Retrieval". Traitement du Signal 40, n. 5 (30 ottobre 2023): 2041–49. http://dx.doi.org/10.18280/ts.400522.
Testo completoKimm, Melanie A., Maxim Shevtsov, Caroline Werner, Wolfgang Sievert, Wu Zhiyuan, Oliver Schoppe, Bjoern H. Menze et al. "Gold Nanoparticle Mediated Multi-Modal CT Imaging of Hsp70 Membrane-Positive Tumors". Cancers 12, n. 5 (22 maggio 2020): 1331. http://dx.doi.org/10.3390/cancers12051331.
Testo completoManser, Steffen, Shaun Keck, Mario Vitacolonna, Felix Wuehler, Ruediger Rudolf e Matthias Raedle. "Innovative Imaging Techniques: A Conceptual Exploration of Multi-Modal Raman Light Sheet Microscopy". Micromachines 14, n. 9 (5 settembre 2023): 1739. http://dx.doi.org/10.3390/mi14091739.
Testo completoT, Dr Kusuma. "Survey on Multi-Modal Medical Image Fusion". International Journal for Research in Applied Science and Engineering Technology 11, n. 11 (30 novembre 2023): 1126–31. http://dx.doi.org/10.22214/ijraset.2023.56694.
Testo completoBashiri, Fereshteh, Ahmadreza Baghaie, Reihaneh Rostami, Zeyun Yu e Roshan D’Souza. "Multi-Modal Medical Image Registration with Full or Partial Data: A Manifold Learning Approach". Journal of Imaging 5, n. 1 (30 dicembre 2018): 5. http://dx.doi.org/10.3390/jimaging5010005.
Testo completoAl-Sharify, Talib A. Al, Mohammed Hussein .., Aqeel Hussen e Zaid Saad Madhi. "Multilevel Features Fusion of Intelligent Techniques for Brain Imaging Analysis". Fusion: Practice and Applications 11, n. 1 (2023): 100–113. http://dx.doi.org/10.54216/fpa.110108.
Testo completoTanu e Deepti Kakkar. "Diagnostic Assessment Techniques and Non-Invasive Biomarkers for Autism Spectrum Disorder". International Journal of E-Health and Medical Communications 10, n. 3 (luglio 2019): 79–95. http://dx.doi.org/10.4018/ijehmc.2019070105.
Testo completoTesi sul tema "Multi-Modal Imaging Techniques"
Namati, Jacqueline Thiesse. "Phenotype characterization of lung structure in inbred mouse strains using multi modal imaging techniques". Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/256.
Testo completoSidlipura, Ravi Kumar Sujith Kumar. "Multi-modal and multiscale image analysis work flows for characterizing through-thickness impregnation of fiber reinforced composites manufactured by simplified CRTM process". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Lille Douai, 2024. http://www.theses.fr/2024MTLD0010.
Testo completoThis thesis presents an experimental study to advance thermoplastic Compression Resin Transfer Molding (CRTM), focusing on industrial efficiency, sustainability, and recyclability goals aligned with the Sustainable Development Goals for Industry, Innovation, and Climate Action. By addressing multi-scale resin flow complexity in CRTM, this research investigates transverse flow and process-induced porosity at the meso scale of glass fiber bundles to improve impregnation uniformity and compaction control, bridging theoretical frameworks with scalable applications. The study focuses on a thermoplastic polypropylene matrix reinforced with six layers of bidirectional UD woven glass fibers ([0/90]3) consolidated on a CRTM setup. The “Simplified CRTM” method is developed on an industrial press, using displacement-controlled compaction ratios. This method omits active resin injection, relying on a uniformly distributed viscous polymer pool beneath the unsaturated preform to drive resin flow uniformly with a unidirectional flow path. Controlled displacement and pressure optimize resin paths, manage fiber volume fraction, and reduce porosity. Three multi-step compaction configurations are evaluated: Configuration 1 (Reference): Uses force compaction as a baseline for comparing resin distribution and fiber structure. Configuration 2 (simplified CRTM): Displacement-controlled compaction enhances resin infiltration but faces challenges like edge race-tracking and fiber volume fraction (Vf) variability, affecting impregnation. Configuration 3 (simplified CRTM with Edge Sealing): Introduces high-temperature sealant tape at mold edges, limiting resin escape, maintaining transverse flow, and reducing porosity and race-tracking. Configuration 3 edge-sealing technique establishes a reproducible process for high quality CRTM composites. An advanced 2D multi-modal imaging protocol, tailored for partially impregnated samples produced via simplified CRTM with unfilled spaces and fragile microstructures, includes polarized light microscopy, fluorescence microscopy, and scanning electron microscopy for qualitative and quantitative characterization. An original two-step polishing process preserves surface integrity, and image post-processing workflows quantify impregnation quality and void distribution. The study is completed with a fine evaluation of the impregnation mechanisms using X-ray micro computed tomography technique (micro-CT) relying on helicoidal inspection method. Results demonstrate that compaction parameters directly impact impregnation level, reaching an impregnation limit. This thesis establishes a scalable, data-driven CRTM framework bridging laboratory experimentation with industrial requirements for high-performance thermoplastic composites. It offers insights into streamlined protocols and microstructure-based analysis, enhancing understanding of the interplay between impregnation and permeability in CRTM. These findings align with precision demands in sectors like automotive and aerospace, where CRTM composites are crucial for structural applications
Wang, Xue. "An Integrated Multi-modal Registration Technique for Medical Imaging". FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3512.
Testo completoBedard, Noah. "Multi-Modal Imaging Techniques for Early Cancer Diagnostics". Thesis, 2012. http://hdl.handle.net/1911/64685.
Testo completoPo, Ming Jack. "Multi-scale Representations for Classification of Protein Crystal Images and Multi-Modal Registration of the Lung". Thesis, 2015. https://doi.org/10.7916/D87M06MZ.
Testo completoNamati, Jacqueline Thiesse McLennan Geoffrey. "Phenotype characterization of lung structure in inbred mouse strains using multi modal imaging techniques y Jacqueline Thiesse Namati". 2009. http://ir.uiowa.edu/etd/256/.
Testo completoCapitoli di libri sul tema "Multi-Modal Imaging Techniques"
Dong, Pei, Yanrong Guo, Dinggang Shen e Guorong Wu. "Multi-atlas and Multi-modal Hippocampus Segmentation for Infant MR Brain Images by Propagating Anatomical Labels on Hypergraph". In Patch-Based Techniques in Medical Imaging, 188–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-28194-0_23.
Testo completoSharma, Deepshikha, Ulrike Rothenhaeusler, Katharina Schmidt-Ott, Marvin Nurit, Yuly Castro Cartagena, Gaetan Le-Goic, Edith Joseph, Sony George e Tiziana Lombardo. "Monitoring and Understanding VOC Induced Glass Corrosion Using Multi-modal Imaging Techniques". In Lecture Notes in Mechanical Engineering, 359–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17594-7_27.
Testo completoGeremia, Ezequiel, Bjoern H. Menze, Marcel Prastawa, M. A. Weber, Antonio Criminisi e Nicholas Ayache. "Brain Tumor Cell Density Estimation from Multi-modal MR Images Based on a Synthetic Tumor Growth Model". In Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging, 273–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36620-8_27.
Testo completoMani, V. R. S. "Deep Learning Models for Semantic Multi-Modal Medical Image Segmentation". In Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention, 107–25. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-7544-7.ch007.
Testo completoShkel Anton, Natarajan Shyam, Schimpf Stefan, Culjat Martin O., Brose Andreas, Boese Axel, Schmidt Bertram et al. "A Transurethral Catheter-Based Ultrasound System for Multi-Modal Fusion". In Studies in Health Technology and Informatics. IOS Press, 2012. https://doi.org/10.3233/978-1-61499-022-2-463.
Testo completoUdendhran, R., e Balamurugan M. "Demystification of Deep Learning-Driven Medical Image Processing and Its Impact on Future Biomedical Applications". In Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention, 844–60. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-7544-7.ch043.
Testo completoUdendhran, R., e Balamurugan M. "Demystification of Deep Learning-Driven Medical Image Processing and Its Impact on Future Biomedical Applications". In Deep Neural Networks for Multimodal Imaging and Biomedical Applications, 155–71. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-3591-2.ch010.
Testo completoLawrie, Stephen M., Eve C. Johnston e Daniel R. Weinberger. "Towards an integrated imaging of schizophrenia". In Schizophrenia: From neuroimaging to neuroscience, 363–96. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198525967.003.0013.
Testo completoKilindris, Thomas V., e Kiki Theodorou. "Combining Geometry and Image in Biomedical Systems". In Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications, 197–212. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-314-2.ch013.
Testo completoTalwar, Rajneesh, Manvinder Sharma e Sonia. "A Comprehensive Review on Artificial Intelligence-Driven Radiomics for Early Cancer Detection and Intelligent Medical Supply Chain". In Advances in Logistics, Operations, and Management Science, 226–54. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-1347-3.ch015.
Testo completoAtti di convegni sul tema "Multi-Modal Imaging Techniques"
Song, Jun, Yusi Miao, Joanne A. Matsubara, Marinko V. Sarunic e Myeong Jin Ju. "Multi-modal functional sensorless adaptive optics for small animal retinal imaging". In Optical Coherence Imaging Techniques and Imaging in Scattering Media, a cura di Maciej Wojtkowski, Yoshiaki Yasuno e Benjamin J. Vakoc. SPIE, 2023. http://dx.doi.org/10.1117/12.2670968.
Testo completoIzatt, Joseph A. "Novel Multi-Modal Sub-Diffraction Imaging Modalities Enabled by Structured Illumination Microscopy". In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ntm.2017.nm2c.1.
Testo completoCochran, Jeffrey M., David R. Busch, Han Y. Ban, Venkaiah C. Kavuri, Martin J. Schweiger, Simon R. Arridge e Arjun G. Yodh. "Multi-modal diffuse optical techniques for breast cancer neoadjuvant chemotherapy monitoring (Conference Presentation)". In Multimodal Biomedical Imaging XII, a cura di Fred S. Azar e Xavier Intes. SPIE, 2017. http://dx.doi.org/10.1117/12.2251455.
Testo completoSpielman-Sun, Eleanor, Sharon Bone e Samuel Webb. "Integrating synchrotron x-ray fluorescence mapping with complementary imaging techniques to obtain multi-modal datasets for the earth and environmental sciences at SSRL". In Goldschmidt 2024. United States of America: Geochemical Society, 2024. https://doi.org/10.46427/gold2024.24226.
Testo completoLeung, Nathanael. "3D multi-modal imaging of demineralised dentine using combinedscanning transmission X-ray microscopy (STXM-CT) and micro-X-ray diffraction (µ-XRD-CT) tomography techniques". In Microscience Microscopy Congress 2021 incorporating EMAG 2021. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.mmc2021.268.
Testo completoYang, Zhuo, Jaehyuk Kim, Yan Lu, Ho Yeung, Brandon Lane, Albert Jones e Yande Ndiaye. "A Multi-Modal Data-Driven Decision Fusion Method for Process Monitoring in Metal Powder Bed Fusion Additive Manufacturing". In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-96740.
Testo completoBielecki, Michael A., e Paul A. Iaizzo. "The Use of a Pulsatile Perfusion Apparatus for the Assessment of Aortic Valve Function within Formalin Fixed Human Hearts: Pre- And Post-Tavr Implantation with Subsequent Micro-CT Analyses". In 2022 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/dmd2022-1059.
Testo completoPrincye, P. Hosanna, e Suzain Mehak. "Brain Tumor Detection Using Image Processing". In International Conference on Recent Trends in Computing & Communication Technologies (ICRCCT’2K24). International Journal of Advanced Trends in Engineering and Management, 2024. http://dx.doi.org/10.59544/itqb1258/icrcct24p112.
Testo completoGe, Xiaowei, Fátima C. Pereira, Yifan Zhu, Michael Wagner e Ji-Xin Cheng. "Unveiling the impact of drug on single cell metabolism in human gut microbiome by an SRS-FISH platform". In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fm6e.3.
Testo completoFujii, Kengo, Nao Kurokawa, Kazuki Kawai, Shogo Morita, Kazuki Shimose, Ryosuke Kujime e Hirotsugu Yamamoto. "Generating Sound just Below an Aerial Image Formed with AIRR". In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.6a_a409_3.
Testo completo