Tesi sul tema "Neural Language Model"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Neural Language Model".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Rolnic, Sergiu Gabriel. "Anonimizzazione di documenti mediante Named Entity Recognition e Neural Language Model". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Cerca il testo completoLe, Hai Son. "Continuous space models with neural networks in natural language processing". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00776704.
Testo completoKeisala, Simon. "Using a Character-Based Language Model for Caption Generation". Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163001.
Testo completoGorana, Mijatović. "Dekompozicija neuralne aktivnosti: model za empirijsku karakterizaciju inter-spajk intervala". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2018. https://www.cris.uns.ac.rs/record.jsf?recordId=107498&source=NDLTD&language=en.
Testo completoThe advances in extracellular neural recording techniquesresult in big data volumes that necessitate fast,reliable, and automatic identification of statisticallysimilar units. This study proposes a single frameworkyielding a compact set of probabilistic descriptors thatcharacterise the firing patterns of a single unit. Probabilisticfeatures are estimated from an inter-spikeintervaltime series, without assumptions about the firing distribution or the stationarity. The first level of proposedfiring patterns decomposition divides the inter-spikeintervals into bursting, moderate and idle firing modes,yielding a coarse feature set. The second level identifiesthe successive bursting spikes, or the spiking acceleration/deceleration in the moderate firing mode, yieldinga refined feature set. The features are estimated fromsimulated data and from experimental recordings fromthe lateral prefrontal cortex in awake, behaving rhesusmonkeys. An effcient and stable partitioning of neuralunits is provided by the ensemble evidence accumulationclustering. The possibility of selecting the number ofclusters and choosing among coarse and refined featuresets provides an opportunity to explore and comparedifferent data partitions. The estimation of features, ifapplied to a single unit, can serve as a tool for the firinganalysis, observing either overall spiking activity or theperiods of interest in trial-to-trial recordings. If applied tomassively parallel recordings, it additionally serves as aninput to the clustering procedure, with the potential tocompare the functional properties of various brainstructures and to link the types of neural cells to theparticular behavioural states.
Garagnani, Max. "Understanding language and attention : brain-based model and neurophysiological experiments". Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/243852.
Testo completoMiao, Yishu. "Deep generative models for natural language processing". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:e4e1f1f9-e507-4754-a0ab-0246f1e1e258.
Testo completoAl-Kadhimi, Staffan, e Paul Löwenström. "Identification of machine-generated reviews : 1D CNN applied on the GPT-2 neural language model". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280335.
Testo completoI och med de senaste framstegen inom maskininlärning kan datorer skapa mer och mer övertygande text, vilket skapar en oro för ökad falsk information på internet. Samtidigt vägs detta upp genom att forskare skapar verktyg för att identifiera datorgenererad text. Forskare har kunnat utnyttja svagheter i neurala språkmodeller och använda dessa mot dem. Till exempel tillhandahåller GLTR användare en visuell representation av texter, som hjälp för att klassificera dessa som människo- skrivna eller maskingenererade. Genom att träna ett faltningsnätverk (convolutional neural network, eller CNN) på utdata från GLTR-analys av maskingenererade och människoskrivna filmrecensioner, tar vi GLTR ett steg längre och använder det för att genomföra klassifikationen automatiskt. Emellertid tycks det ej vara tillräckligt att använda en CNN med GLTR som huvuddatakälla för att klassificera på en nivå som är jämförbar med de bästa existerande metoderna.
Roos, Magnus. "Speech Comprehension : Theoretical approaches and neural correlates". Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11240.
Testo completoCavallucci, Martina. "Speech Recognition per l'italiano: Sviluppo e Sperimentazione di Soluzioni Neurali con Language Model". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Cerca il testo completoRossi, Alex. "Self-supervised information retrieval: a novel approach based on Deep Metric Learning and Neural Language Models". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Cerca il testo completoGennari, Riccardo. "End-to-end Deep Metric Learning con Vision-Language Model per il Fashion Image Captioning". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25772/.
Testo completoHubková, Helena. "Named-entity recognition in Czech historical texts : Using a CNN-BiLSTM neural network model". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385682.
Testo completoLombardini, Alessandro. "Estrazione di Correlazioni Medicali da Social Post non Etichettati con Language Model Neurali e Data Clustering". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Cerca il testo completoBojan, Batinić. "Model za predviđanje količine ambalažnog i biorazgradivog otpada primenom neuronskih mreža". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2015. http://www.cris.uns.ac.rs/record.jsf?recordId=94084&source=NDLTD&language=en.
Testo completoBy using artificial neural networks, models for prediction of the quantity ofpackaging and biodegradable municipal waste in the Republic of Serbia bythe end of 2030, were developed. Models were based on dependencebetween total household consumption and generated quantities of twoobserved waste streams. In addition, based on dependence with the GrossDomestic Product (GDP), a model for the projection of share of differentmunicipal solid waste treatment options in the Republic of Serbia for the sameperiod, was created. Obtained results represent a starting point for assessingthe potential for recycling of packaging waste, and determination ofbiodegradable municipal waste quantities which expected that in the futureperiod will not be disposed at landfills, in accordance with modern principlesof waste management and existing EU requirements in this area.
Prencipe, Michele Pio. "Elaborazione del Linguaggio Naturale con Metodi Probabilistici e Reti Neurali". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24312/.
Testo completoGaldo, Carlos, e Teddy Chavez. "Prototyputveckling för skalbar motor med förståelse för naturligt språk". Thesis, KTH, Hälsoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223350.
Testo completoNatural Language Understanding is a field that is part of Natural Language Processing. Big improvements have been made in the broad field of Natural Language Understanding during the past two decades. One big contribution to this is improvement is Neural Networks, a mathematical model inspired by biological brains. Natural Language Understanding is used in fields that require deeper understanding by applications. Google translate, Google search engine and grammar/spelling check are some examples of applications requiring deeper understanding. Thing Launcher is an application developed by A Great Thing AB. Thing Launcher is an application capable of managing other applications with different parameters. Some examples of parameters the user can use are geographic position and time. The user can as an example control what song will be played when you get home or order an Uber when you arrive to a certain destination. It is possible to control Thing Launcher today by text input. A Great Thing AB needs help developing a prototype capable of understanding text input and speech. The meaning of scalable is that it should be possible to develop, add functions and applications with as little impact as possible on up time and performance of the service. A comparison of suitable algorithms, tools and frameworks has been made in this thesis in order research what it takes to develop a scalable engine with the natural language understanding and then build a prototype from this gathered information. A theoretical comparison was made between Hidden Markov Models and Neural Networks. The results showed that Neural Networks are superior in the field of natural language understanding. The tests made in this thesis indicated that high accuracy could be achieved using neural networks. TensorFlow framework was chosen because it has many different types of neural network implemented in C/C++ ready to be used with Python and alsoand for the wide compatibility with mobile devices. The prototype should be able to identify voice commands. The prototype has two important components called Command tagger, which is going to identify which application the user wants to control and NER tagger, which is the going to identify what the user wants to do. To calculate the accuracy, two types of tests, one for each component, was executed several times to calculate how often the components guessed right after each training iteration. Each training iteration consisted of giving the components thousands of sentences to guess and giving them feedback by then letting them know the right answers. With the help of feedback, the components were molded to act right in situations like the training. The tests after the training process resulted with the Command tagger guessing right 94% of the time and the NER tagger guessing right 96% of the time. The built-in software in Android was used for speech recognition. This is a function that converts sound waves to text. A server-based solution with REST interface was developed to make the engine scalability. This thesis resulted with a working prototype that can be used to further developed into a scalable engine.
Botha, Jan Abraham. "Probabilistic modelling of morphologically rich languages". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:8df7324f-d3b8-47a1-8b0b-3a6feb5f45c7.
Testo completoBuchal, Petr. "Využití neanotovaných dat pro trénování OCR". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445580.
Testo completoAppelstål, Michael. "Multimodal Model for Construction Site Aversion Classification". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-421011.
Testo completoScarcella, Alessandro. "Recurrent neural network language models in the context of under-resourced South African languages". Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29431.
Testo completoEspaña, Boquera Salvador. "Contributions to the joint segmentation and classification of sequences (My two cents on decoding and handwriting recognition)". Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/62215.
Testo completo[ES] Este trabajo se centra en problemas (como reconocimiento automático del habla (ASR) o de escritura manuscrita (HTR)) que cumplen: 1) pueden representarse (quizás aproximadamente) en términos de secuencias unidimensionales, 2) su resolución implica descomponer la secuencia en segmentos que se pueden clasificar en un conjunto finito de unidades. Las tareas de segmentación y de clasificación necesarias están tan intrínsecamente interrelacionadas ("paradoja de Sayre") que deben realizarse conjuntamente. Nos hemos inspirado en lo que algunos autores denominan "La trilogía exitosa", refereido a la sinergia obtenida cuando se tiene: - un buen formalismo, que dé lugar a buenos algoritmos; - un diseño e implementación ingeniosos y eficientes, que saquen provecho de las características del hardware; - no descuidar el "saber hacer" de la tarea, un buen preproceso y el ajuste adecuado de los diversos parámetros. Describimos y estudiamos "modelos generativos en dos etapas" sin reordenamientos (TSGMs), que incluyen no sólo los modelos ocultos de Markov (HMM), sino también modelos segmentales (SMs). Se puede obtener un decodificador de "dos pasos" considerando a la inversa un TSGM introduciendo no determinismo: 1) se genera un grafo acíclico dirigido (DAG) y 2) se utiliza conjuntamente con un modelo de lenguaje (LM). El decodificador de "un paso" es un caso particular. Se formaliza el proceso de decodificación con ecuaciones de lenguajes y semianillos, se propone el uso de redes de transición recurrente (RTNs) como forma normal de gramáticas de contexto libre (CFGs) y se utiliza el paradigma de análisis por composición de manera que el análisis de CFGs resulta una extensión del análisis de FSA. Se proponen algoritmos de composición de transductores que permite el uso de RTNs y que no necesita recurrir a composición de filtros incluso en presencia de transiciones nulas y semianillos no idempotentes. Se propone una extensa revisión de LMs y algunas contribuciones relacionadas con su interfaz, con su representación y con la evaluación de LMs basados en redes neuronales (NNLMs). Se ha realizado una revisión de SMs que incluye SMs basados en combinación de modelos generativos y discriminativos, así como un esquema general de tipos de emisión de tramas y de SMs. Se proponen versiones especializadas del algoritmo de Viterbi para modelos de léxico y que manipulan estados activos sin recurrir a estructuras de tipo diccionario, sacando provecho de la caché. Se ha propuesto una arquitectura "dataflow" para obtener reconocedores a partir de un pequeño conjunto de piezas básicas con un protocolo de serialización de DAGs. Describimos generadores de DAGs que pueden tener en cuenta restricciones sobre la segmentación, utilizar modelos segmentales no limitados a HMMs, hacer uso de los decodificadores especializados propuestos en este trabajo y utilizar un transductor de control que permite el uso de unidades dependientes del contexto. Los decodificadores de DAGs hacen uso de un interfaz bastante general de LMs que ha sido extendido para permitir el uso de RTNs. Se proponen también mejoras para reconocedores "un paso" basados en algoritmos especializados para léxicos y en la interfaz de LMs en modo "bunch", así como su paralelización. La parte experimental está centrada en HTR en diversas modalidades de adquisición (offline, bimodal). Hemos propuesto técnicas novedosas para el preproceso de escritura que evita el uso de heurísticos geométricos. En su lugar, utiliza redes neuronales. Se ha probado con HMMs hibridados con redes neuronales consiguiendo, para la base de datos IAM, algunos de los mejores resultados publicados. También podemos mencionar el uso de información de sobre-segmentación, aproximaciones sin restricción de un léxico, experimentos con datos bimodales o la combinación de HMMs híbridos con reconocedores de tipo holístico.
[CAT] Aquest treball es centra en problemes (com el reconeiximent automàtic de la parla (ASR) o de l'escriptura manuscrita (HTR)) on: 1) les dades es poden representar (almenys aproximadament) mitjançant seqüències unidimensionals, 2) cal descompondre la seqüència en segments que poden pertanyer a un nombre finit de tipus. Sovint, ambdues tasques es relacionen de manera tan estreta que resulta impossible separar-les ("paradoxa de Sayre") i s'han de realitzar de manera conjunta. Ens hem inspirat pel que alguns autors anomenen "trilogia exitosa", referit a la sinèrgia obtinguda quan prenim en compte: - un bon formalisme, que done lloc a bons algorismes; - un diseny i una implementació eficients, amb ingeni, que facen bon us de les particularitats del maquinari; - no perdre de vista el "saber fer", emprar un preprocés adequat i fer bon us dels diversos paràmetres. Descrivim i estudiem "models generatiu amb dues etapes" sense reordenaments (TSGMs), que inclouen no sols inclouen els models ocults de Markov (HMM), sinò també models segmentals (SM). Es pot obtindre un decodificador "en dues etapes" considerant a l'inrevés un TSGM introduint no determinisme: 1) es genera un graf acíclic dirigit (DAG) que 2) és emprat conjuntament amb un model de llenguatge (LM). El decodificador "d'un pas" en és un cas particular. Descrivim i formalitzem del procés de decodificació basada en equacions de llenguatges i en semianells. Proposem emprar xarxes de transició recurrent (RTNs) com forma normal de gramàtiques incontextuals (CFGs) i s'empra el paradigma d'anàlisi sintàctic mitjançant composició de manera que l'anàlisi de CFGs resulta una lleugera extensió de l'anàlisi de FSA. Es proposen algorismes de composició de transductors que poden emprar RTNs i que no necessiten recorrer a la composició amb filtres fins i tot amb transicions nul.les i semianells no idempotents. Es proposa una extensa revisió de LMs i algunes contribucions relacionades amb la seva interfície, amb la seva representació i amb l'avaluació de LMs basats en xarxes neuronals (NNLMs). S'ha realitzat una revisió de SMs que inclou SMs basats en la combinació de models generatius i discriminatius, així com un esquema general de tipus d'emissió de trames i altre de SMs. Es proposen versions especialitzades de l'algorisme de Viterbi per a models de lèxic que permeten emprar estats actius sense haver de recórrer a estructures de dades de tipus diccionari, i que trauen profit de la caché. S'ha proposat una arquitectura de flux de dades o "dataflow" per obtindre diversos reconeixedors a partir d'un xicotet conjunt de peces amb un protocol de serialització de DAGs. Descrivim generadors de DAGs capaços de tindre en compte restriccions sobre la segmentació, emprar models segmentals no limitats a HMMs, fer us dels decodificadors especialitzats proposats en aquest treball i emprar un transductor de control que permet emprar unitats dependents del contexte. Els decodificadors de DAGs fan us d'una interfície de LMs prou general que ha segut extesa per permetre l'ús de RTNs. Es proposen millores per a reconeixedors de tipus "un pas" basats en els algorismes especialitzats per a lèxics i en la interfície de LMs en mode "bunch", així com la seua paral.lelització. La part experimental està centrada en el reconeiximent d'escriptura en diverses modalitats d'adquisició (offline, bimodal). Proposem un preprocés d'escriptura manuscrita evitant l'us d'heurístics geomètrics, en el seu lloc emprem xarxes neuronals. S'han emprat HMMs hibridats amb xarxes neuronals aconseguint, per a la base de dades IAM, alguns dels millors resultats publicats. També podem mencionar l'ús d'informació de sobre-segmentació, aproximacions sense restricció a un lèxic, experiments amb dades bimodals o la combinació de HMMs híbrids amb classificadors holístics.
España Boquera, S. (2016). Contributions to the joint segmentation and classification of sequences (My two cents on decoding and handwriting recognition) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62215
TESIS
Premiado
Mikolov, Tomáš. "Statistické jazykové modely založené na neuronových sítích". Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-261268.
Testo completoLei, Tao Ph D. Massachusetts Institute of Technology. "Interpretable neural models for natural language processing". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108990.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 109-119).
The success of neural network models often comes at a cost of interpretability. This thesis addresses the problem by providing justifications behind the model's structure and predictions. In the first part of this thesis, we present a class of sequence operations for text processing. The proposed component generalizes from convolution operations and gated aggregations. As justifications, we relate this component to string kernels, i.e. functions measuring the similarity between sequences, and demonstrate how it encodes the efficient kernel computing algorithm into its structure. The proposed model achieves state-of-the-art or competitive results compared to alternative architectures (such as LSTMs and CNNs) across several NLP applications. In the second part, we learn rationales behind the model's prediction by extracting input pieces as supporting evidence. Rationales are tailored to be short and coherent, yet sufficient for making the same prediction. Our approach combines two modular components, generator and encoder, which are trained to operate well together. The generator specifies a distribution over text fragments as candidate rationales and these are passed through the encoder for prediction. Rationales are never given during training. Instead, the model is regularized by the desiderata for rationales. We demonstrate the effectiveness of this learning framework in applications such multi-aspect sentiment analysis. Our method achieves a performance over 90% evaluated against manual annotated rationales.
by Tao Lei.
Ph. D.
Kunz, Jenny. "Neural Language Models with Explicit Coreference Decision". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-371827.
Testo completoLabeau, Matthieu. "Neural language models : Dealing with large vocabularies". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS313/document.
Testo completoThis work investigates practical methods to ease training and improve performances of neural language models with large vocabularies. The main limitation of neural language models is their expensive computational cost: it depends on the size of the vocabulary, with which it grows linearly. Despite several training tricks, the most straightforward way to limit computation time is to limit the vocabulary size, which is not a satisfactory solution for numerous tasks. Most of the existing methods used to train large-vocabulary language models revolve around avoiding the computation of the partition function, ensuring that output scores are normalized into a probability distribution. Here, we focus on sampling-based approaches, including importance sampling and noise contrastive estimation. These methods allow an approximate computation of the partition function. After examining the mechanism of self-normalization in noise-contrastive estimation, we first propose to improve its efficiency with solutions that are adapted to the inner workings of the method and experimentally show that they considerably ease training. Our second contribution is to expand on a generalization of several sampling based objectives as Bregman divergences, in order to experiment with new objectives. We use Beta divergences to derive a set of objectives from which noise contrastive estimation is a particular case. Finally, we aim at improving performances on full vocabulary language models, by augmenting output words representation with subwords. We experiment on a Czech dataset and show that using character-based representations besides word embeddings for output representations gives better results. We also show that reducing the size of the output look-up table improves results even more
Emerson, Guy Edward Toh. "Functional distributional semantics : learning linguistically informed representations from a precisely annotated corpus". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284882.
Testo completoLi, Zhongliang. "Slim Embedding Layers for Recurrent Neural Language Models". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1531950458646138.
Testo completoGangireddy, Siva Reddy. "Recurrent neural network language models for automatic speech recognition". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28990.
Testo completoPredrag, Pecev. "Развој алгоритма и система за дедуктивну предикцију и анализу кретања кошаркашких судија". Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=104240&source=NDLTD&language=en.
Testo completoDoktorska disertacija pripada oblasti informacionih sistema, sa jasnim akcentom na upotrebu neuronskih mreža za rešavanje problema višestrukih zavisnih vremenskih serija koji je u ovom doktoratu definisan.Osnovni cilj disertacije je kreiranje sistema u formi edukativnog softvera putem kojeg će se obučavati mlade košarkaške sudijeJedan od ključih elemenata ovog doktorata jeste simulacija horizontalnog vidnog polja na osnovu kojeg se utvrđuje da li je rezonovano kretanje košarkaških sudija bilo adekvatno ili nije. Stoga razvijeni softver poseduje spomenutu edukativnu primenu.Kako bi se realizovao spomenuti softver sprovedeno je istraživanje koje je obuhvatilo obučavanje velikog broja tradicionalnih višeslojnih perceptrona kao i formiranje posebne LTR – MDTS strukture neuronske mreže za koju se smatra da je pogodna za rešavanje postojećeg problema. Za realizaciju simulacije horizontalnog vidnog polja razmatrano je više algoritama iz oblasti računarske grafike a Sweep and Prune algoritam je parcijalno pružio osnovu za razvijeni i trenutno implementirani algoritam.
Doctoral dissertation belongs to the field of information systems, with a clear emphasis on the use of neural networks for solving the problem of multiple dependent time series, which is defined in this doctorate. The main objective of the thesis is to create a system in the form of educational software that will be used druring the training of young basketball referees.One of the key elements of this doctorate is a simulation of a horizontal field of vision on the basis of which it is determined whether the movement of reasoned basketball referees was adequate or not. Therefore developed software has aforementioned educational use. In order to realize the aforementioned software, a research was conducted that included training of a large number of traditional multilayer perceptron neural networks and the formation of special LTR - MDTS neural network structure which is considered to be suitable for solving the presented problem. For the realization of the simulation of the horizontal field of vision a large number of algorithms in the field of computer graphis was considered and Sweep and Prune algorithm partially provided the basis for the developed and currently implemented algorithm.
Wen, Tsung-Hsien. "Recurrent neural network language generation for dialogue systems". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275648.
Testo completoParthiban, Dwarak Govind. "On the Softmax Bottleneck of Word-Level Recurrent Language Models". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41412.
Testo completoHedström, Simon. "General Purpose Vector Representation for Swedish Documents : An application of Neural Language Models". Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160109.
Testo completoSun, Qing. "Greedy Inference Algorithms for Structured and Neural Models". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/81860.
Testo completoPh. D.
Siniša, Suzić. "Parametarska sinteza ekspresivnog govora". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=110631&source=NDLTD&language=en.
Testo completoIn this thesis methods for expressive speech synthesis using parametricapproaches are presented. It is shown that better results are achived withusage of deep neural networks compared to synthesis based on hiddenMarkov models. Three new methods for synthesis of expresive speech usingdeep neural networks are presented: style codes, model re-training andshared hidden layer architecture. It is shown that best results are achived byusing style code method. The new method for style transplantation based onshared hidden layer architecture is also proposed. It is shown that thismethod outperforms referent method from literature.
Kamper, Herman. "Unsupervised neural and Bayesian models for zero-resource speech processing". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/25432.
Testo completoKryściński, Wojciech. "Training Neural Models for Abstractive Text Summarization". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-236973.
Testo completoAbstraktiv textsammanfattning syftar på att korta ner långa textdokument till en förkortad, mänskligt läsbar form, samtidigt som den viktigaste informationen i källdokumentet bevaras. Ett vanligt tillvägagångssätt för att träna sammanfattningsmodeller är att använda maximum likelihood-estimering med teacher-forcing-strategin. Trots dess popularitet har denna metod visat sig ge modeller med suboptimal prestanda vid inferens. I det här arbetet undersöks hur användningen av alternativa, uppgiftsspecifika träningssignaler påverkar sammanfattningsmodellens prestanda. Två nya träningssignaler föreslås och utvärderas som en del av detta arbete. Den första, vilket är en ny metrik, mäter överlappningen mellan n-gram i sammanfattningen och den sammanfattade artikeln. Den andra använder en diskrimineringsmodell för att skilja mänskliga skriftliga sammanfattningar från genererade på ordnivå. Empiriska resultat visar att användandet av de nämnda mätvärdena som belöningar för policygradient-träning ger betydande prestationsvinster mätt med ROUGE-score, novelty score och mänsklig utvärdering.
Brorson, Erik. "Classifying Hate Speech using Fine-tuned Language Models". Thesis, Uppsala universitet, Statistiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352637.
Testo completoGold, Carrie Elizabeth. "Exploring the Resting State Neural Activity of Monolinguals and Late and Early Bilinguals". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6671.
Testo completoAndruccioli, Matteo. "Previsione del Successo di Prodotti di Moda Prima della Commercializzazione: un Nuovo Dataset e Modello di Vision-Language Transformer". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24956/.
Testo completoChen, Charles L. "Neural Network Models for Tasks in Open-Domain and Closed-Domain Question Answering". Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1578592581367428.
Testo completoNgo, Ho Anh Khoa. "Generative Probabilistic Alignment Models for Words and Subwords : a Systematic Exploration of the Limits and Potentials of Neural Parametrizations". Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG014.
Testo completoAlignment consists of establishing a mapping between units in a bitext, combining a text in a source language and its translation in a target language. Alignments can be computed at several levels: between documents, between sentences, between phrases, between words, or even between smaller units end when one of the languages is morphologically complex, which implies to align fragments of words (morphemes). Alignments can also be considered between more complex linguistic structures such as trees or graphs. This is a complex, under-specified task that humans accomplish with difficulty. Its automation is a notoriously difficult problem in natural language processing, historically associated with the first probabilistic word-based translation models. The design of new models for natural language processing, based on distributed representations computed by neural networks, allows us to question and revisit the computation of these alignments. This research project, therefore, aims to comprehensively understand the limitations of existing statistical alignment models and to design neural models that can be learned without supervision to overcome these drawbacks and to improve the state of art in terms of alignment accuracy
Šůstek, Martin. "Word2vec modely s přidanou kontextovou informací". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-363837.
Testo completoZamora, Martínez Francisco Julián. "Aportaciones al modelado conexionista de lenguaje y su aplicación al reconocimiento de secuencias y traducción automática". Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/18066.
Testo completoZamora Martínez, FJ. (2012). Aportaciones al modelado conexionista de lenguaje y su aplicación al reconocimiento de secuencias y traducción automática [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18066
Palancia
Lopes, Evandro Dalbem. "Utilização do modelo skip-gram para representação distribuída de palavras no projeto Media Cloud Brasil". reponame:Repositório Institucional do FGV, 2015. http://hdl.handle.net/10438/16685.
Testo completoApproved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2016-07-19T19:55:35Z (GMT) No. of bitstreams: 1 dissertacao_skip_gram.pdf: 1559216 bytes, checksum: c9487105e0e9341acd30f549c30d4dc9 (MD5)
Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2016-07-25T17:47:32Z (GMT) No. of bitstreams: 1 dissertacao_skip_gram.pdf: 1559216 bytes, checksum: c9487105e0e9341acd30f549c30d4dc9 (MD5)
Made available in DSpace on 2016-07-25T17:47:47Z (GMT). No. of bitstreams: 1 dissertacao_skip_gram.pdf: 1559216 bytes, checksum: c9487105e0e9341acd30f549c30d4dc9 (MD5) Previous issue date: 2015-06-30
There is a representation problem when working with natural language processing because once the traditional model of bag-of-words represents the documents and words as single matrix, this one tends to be completely sparse. In order to deal with this problem, there are some methods capable of represent the words using a distributed representation, with a smaller dimension and more compact, including some properties that allow to relate words on the semantic form. The aim of this work is to use a dataset obtained by the Media Cloud Brasil project and apply the skip-gram model to explore relations and search for pattern that helps to understand the content.
Existe um problema de representação em processamento de linguagem natural, pois uma vez que o modelo tradicional de bag-of-words representa os documentos e as palavras em uma unica matriz, esta tende a ser completamente esparsa. Para lidar com este problema, surgiram alguns métodos que são capazes de representar as palavras utilizando uma representação distribuída, em um espaço de dimensão menor e mais compacto, inclusive tendo a propriedade de relacionar palavras de forma semântica. Este trabalho tem como objetivo utilizar um conjunto de documentos obtido através do projeto Media Cloud Brasil para aplicar o modelo skip-gram em busca de explorar relações e encontrar padrões que facilitem na compreensão do conteúdo.
Dunja, Vrbaški. "Primena mašinskog učenja u problemu nedostajućih podataka pri razvoju prediktivnih modela". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2020. https://www.cris.uns.ac.rs/record.jsf?recordId=114270&source=NDLTD&language=en.
Testo completoThe problem of missing data is often present when developing predictivemodels. Instead of removing data containing missing values, methods forimputation can be applied. The dissertation proposes a methodology foranalysis of imputation performance in the development of predictive models.Based on the proposed methodology, results of the application of machinelearning algorithms, as an imputation method in the development of specificmodels, are presented.
Zarrinkoub, Sahand. "Transfer Learning in Deep Structured Semantic Models for Information Retrieval". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286310.
Testo completoNya modeller inom informationssökning inkluderar neurala nät som genererar vektorrepresentationer för sökfrågor och dokument. Dessa vektorrepresentationer används tillsammans med ett likhetsmått för att avgöra relevansen för ett givet dokument med avseende på en sökfråga. Semantiska särdrag i sökfrågor och dokument kan kodas in i vektorrepresentationerna. Detta möjliggör informationssökning baserat på semantiska enheter, vilket ej är möjligt genom de klassiska metoderna inom informationssökning, som istället förlitar sig på den ömsesidiga förekomsten av nyckelord i sökfrågor och dokument. För att träna neurala sökmodeller krävs stora datamängder. De flesta av dagens söktjänster används i för liten utsträckning för att möjliggöra framställande av datamängder som är stora nog att träna en neural sökmodell. Därför är det önskvärt att hitta metoder som möjliggör användadet av neurala sökmodeller i domäner med små tillgängliga datamängder. I detta examensarbete har en neural sökmodell implementerats och använts i en metod avsedd att förbättra dess prestanda på en måldatamängd genom att förträna den på externa datamängder. Måldatamängden som används är WikiQA, och de externa datamängderna är Quoras Question Pairs, Reuters RCV1 samt SquAD. I experimenten erhålls de bästa enskilda modellerna genom att föträna på Question Pairs och finjustera på WikiQA. Den genomsnittliga prestandan över ett flertal tränade modeller påverkas negativt av vår metod. Detta äller både när samtliga externa datamänder används tillsammans, samt när de används enskilt, med varierande prestanda beroende på vilken datamängd som används. Att förträna på RCV1 och Question Pairs ger den största respektive minsta negativa påverkan på den genomsnittliga prestandan. Prestandan hos en slumpmässigt genererad, otränad modell är förvånansvärt hög, i genomsnitt högre än samtliga förtränade modeller, och i nivå med BM25. Den bästa genomsnittliga prestandan erhålls genom att träna på måldatamängden WikiQA utan tidigare förträning.
Leal, Márcio Moura. "SingApp: um modelo de identificação de língua de sinais através de captura de movimento em tempo real". Universidade do Vale do Rio dos Sinos, 2018. http://www.repositorio.jesuita.org.br/handle/UNISINOS/7124.
Testo completoMade available in DSpace on 2018-08-01T13:18:07Z (GMT). No. of bitstreams: 1 Márcio Moura Leal_.pdf: 1004771 bytes, checksum: 0e2cfd2ec35b3be3f90959425cc6ec81 (MD5) Previous issue date: 2018-04-06
Nenhuma
O reconhecimento das línguas de sinais visa permitir uma maior inserção social e digital das pessoas surdas através da interpretação da sua língua pelo computador. Esta trabalho apresenta um modelo de reconhecimento de dois dos parâmetros globais das línguas de sinais, as configurações de mão e seus movimentos. Através da utilização de uma tecnologia de captura de infravermelho, a estrutura da mão foi reconstruída em um espaço tridimensional virtual e a Rede Neural Perceptron Multicamadas foi usada para fazer a classificação das configurações de mão e de seus movimentos. Além do método de reconhecimento de sinais, esta trabalho visa disponibilizar um conjunto de dados representativos das condições do cotidiano, constituído por uma base de dados de configurações de mão e de captura de movimento validadas por profissionais fluentes em línguas de sinais. Foi usada como estudo de caso a Língua Brasileira de Sinais, a Libras, e obteve-se como resultados uma precisão de 99.8% e 86.7% de acertos das redes neurais que classificavam as configurações de mão e seus movimentos, respectivamente.
The sign language recognition aims to allow a greater social and digital insertion of deaf people through interpretation of your language by the computer. This work presents a recognition model of two global parameters of the sign languages, hand configurations and their movements. Through the usage of infrared capture technology we built the hand structure on a virtual three-dimensional space and the Multilayer Perceptron Neural Network was used to do the hand configuration and movements classifying. Beyond of method to recognize signs, this work aims to provide a set of representative data of the daily conditions, consisting of a database of hand configurations and motion capture validated by fluent professionals in sign languages. To this work, was used, as study case, the Brazilian Sign Language, Libras, and was obtained accuracy rates of 99.8% and 86.7% from neural networks classifying hand configurations and hand motion respectively.
Harward, Gregory Brent. "Suitability of the NIST Shop Data Model as a Neutral File Format for Simulation". Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd899.pdf.
Testo completoFancellu, Federico. "Computational models for multilingual negation scope detection". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33038.
Testo completoCallin, Jimmy. "Word Representations and Machine Learning Models for Implicit Sense Classification in Shallow Discourse Parsing". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325876.
Testo completo