Articoli di riviste sul tema "Neural state-space models"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Neural state-space models".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Korbicz, Józef, Marcin Mrugalski e Thomas Parisini. "DESIGNING STATE-SPACE MODELS WITH NEURAL NETWORKS". IFAC Proceedings Volumes 35, n. 1 (2002): 459–64. http://dx.doi.org/10.3182/20020721-6-es-1901.01630.
Testo completoSchüssler, Max. "Machine learning with nonlinear state space models". at - Automatisierungstechnik 70, n. 11 (27 ottobre 2022): 1027–28. http://dx.doi.org/10.1515/auto-2022-0089.
Testo completoHe, Mingjian, Proloy Das, Gladia Hotan e Patrick L. Purdon. "Switching state-space modeling of neural signal dynamics". PLOS Computational Biology 19, n. 8 (28 agosto 2023): e1011395. http://dx.doi.org/10.1371/journal.pcbi.1011395.
Testo completoForgione, Marco, e Dario Piga. "Neural State-Space Models: Empirical Evaluation of Uncertainty Quantification". IFAC-PapersOnLine 56, n. 2 (2023): 4082–87. http://dx.doi.org/10.1016/j.ifacol.2023.10.1736.
Testo completoRaol, J. R. "Parameter estimation of state space models by recurrent neural networks". IEE Proceedings - Control Theory and Applications 142, n. 2 (1 marzo 1995): 114–18. http://dx.doi.org/10.1049/ip-cta:19951733.
Testo completoBendtsen, J. D., e K. Trangbaek. "Robust quasi-LPV control based on neural state-space models". IEEE Transactions on Neural Networks 13, n. 2 (marzo 2002): 355–68. http://dx.doi.org/10.1109/72.991421.
Testo completoPaninski, Liam, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad, Michael Vidne, Joshua Vogelstein e Wei Wu. "A new look at state-space models for neural data". Journal of Computational Neuroscience 29, n. 1-2 (1 agosto 2009): 107–26. http://dx.doi.org/10.1007/s10827-009-0179-x.
Testo completoGhahramani, Zoubin, e Geoffrey E. Hinton. "Variational Learning for Switching State-Space Models". Neural Computation 12, n. 4 (1 aprile 2000): 831–64. http://dx.doi.org/10.1162/089976600300015619.
Testo completoAghaee, Mohammad, Stephane Krau, Melih Tamer e Hector Budman. "Graph Neural Network Representation of State Space Models of Metabolic Pathways". IFAC-PapersOnLine 58, n. 14 (2024): 464–69. http://dx.doi.org/10.1016/j.ifacol.2024.08.380.
Testo completoMangion, Andrew Zammit, Ke Yuan, Visakan Kadirkamanathan, Mahesan Niranjan e Guido Sanguinetti. "Online Variational Inference for State-Space Models with Point-Process Observations". Neural Computation 23, n. 8 (agosto 2011): 1967–99. http://dx.doi.org/10.1162/neco_a_00156.
Testo completoLi, Jiahao, Yang Lu, Yuan Xie e Yanyun Qu. "MaskViM: Domain Generalized Semantic Segmentation with State Space Models". Proceedings of the AAAI Conference on Artificial Intelligence 39, n. 5 (11 aprile 2025): 4752–60. https://doi.org/10.1609/aaai.v39i5.32502.
Testo completoTimm, Luís Carlos, Daniel Takata Gomes, Emanuel Pimentel Barbosa, Klaus Reichardt, Manoel Dornelas de Souza e José Flávio Dynia. "Neural network and state-space models for studying relationships among soil properties". Scientia Agricola 63, n. 4 (agosto 2006): 386–95. http://dx.doi.org/10.1590/s0103-90162006000400010.
Testo completoBao, Yajie, Javad Mohammadpour Velni, Aditya Basina e Mahdi Shahbakhti. "Identification of State-space Linear Parameter-varying Models Using Artificial Neural Networks". IFAC-PapersOnLine 53, n. 2 (2020): 5286–91. http://dx.doi.org/10.1016/j.ifacol.2020.12.1209.
Testo completoChakrabarty, Ankush, Gordon Wichern e Christopher R. Laughman. "Meta-Learning of Neural State-Space Models Using Data From Similar Systems". IFAC-PapersOnLine 56, n. 2 (2023): 1490–95. http://dx.doi.org/10.1016/j.ifacol.2023.10.1843.
Testo completoMentzer, Katherine L., e J. Luc Peterson. "Neural network surrogate models for equations of state". Physics of Plasmas 30, n. 3 (marzo 2023): 032704. http://dx.doi.org/10.1063/5.0126708.
Testo completoShen, Shuaijie, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo Zhang e Luziwei Leng. "SpikingSSMs: Learning Long Sequences with Sparse and Parallel Spiking State Space Models". Proceedings of the AAAI Conference on Artificial Intelligence 39, n. 19 (11 aprile 2025): 20380–88. https://doi.org/10.1609/aaai.v39i19.34245.
Testo completoMalik, Wasim Q., Leigh R. Hochberg, John P. Donoghue e Emery N. Brown. "Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces". IEEE Transactions on Biomedical Engineering 62, n. 2 (febbraio 2015): 570–81. http://dx.doi.org/10.1109/tbme.2014.2360393.
Testo completoSUYKENS, JOHAN A. K., BART L. R. DE MOOR e JOOS VANDEWALLE. "Nonlinear system identification using neural state space models, applicable to robust control design". International Journal of Control 62, n. 1 (luglio 1995): 129–52. http://dx.doi.org/10.1080/00207179508921536.
Testo completoBendtsen, Jan Dimon, e Jakob Stoustrup. "Gain Scheduling Control of Non linear Systems Based on Neural State Space Models". IFAC Proceedings Volumes 36, n. 11 (giugno 2003): 573–78. http://dx.doi.org/10.1016/s1474-6670(17)35725-7.
Testo completoCox, Benjamin, Santiago Segarra e Víctor Elvira. "Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks". Signal Processing 234 (settembre 2025): 109998. https://doi.org/10.1016/j.sigpro.2025.109998.
Testo completoBonatti, Colin, e Dirk Mohr. "One for all: Universal material model based on minimal state-space neural networks". Science Advances 7, n. 26 (giugno 2021): eabf3658. http://dx.doi.org/10.1126/sciadv.abf3658.
Testo completoWang, Zhiyuan, Xovee Xu, Goce Trajcevski, Kunpeng Zhang, Ting Zhong e Fan Zhou. "PrEF: Probabilistic Electricity Forecasting via Copula-Augmented State Space Model". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 11 (28 giugno 2022): 12200–12207. http://dx.doi.org/10.1609/aaai.v36i11.21480.
Testo completoCANELON, JOSE I., LEANG S. SHIEH, SHU M. GUO e HEIDAR A. MALKI. "NEURAL NETWORK-BASED DIGITAL REDESIGN APPROACH FOR CONTROL OF UNKNOWN CONTINUOUS-TIME CHAOTIC SYSTEMS". International Journal of Bifurcation and Chaos 15, n. 08 (agosto 2005): 2433–55. http://dx.doi.org/10.1142/s021812740501340x.
Testo completoRuciński, Dariusz. "Artificial Neural Network based on mathematical models used in quantum computing". Studia Informatica. System and information technology 27, n. 2 (11 gennaio 2023): 27–48. http://dx.doi.org/10.34739/si.2022.27.02.
Testo completoXie, Yusen, e Yingjie Mi. "Optimizing inverted pendulum control: Integrating neural network adaptability". Applied and Computational Engineering 101, n. 1 (8 novembre 2024): 213–23. http://dx.doi.org/10.54254/2755-2721/101/20241008.
Testo completoRashid, Mustafa, e Prashant Mhaskar. "Are Neural Networks the Right Tool for Process Modeling and Control of Batch and Batch-like Processes?" Processes 11, n. 3 (24 febbraio 2023): 686. http://dx.doi.org/10.3390/pr11030686.
Testo completoFaramarzi, Mojtaba, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas Verma e Sarath Chandar. "PatchUp: A Feature-Space Block-Level Regularization Technique for Convolutional Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 1 (28 giugno 2022): 589–97. http://dx.doi.org/10.1609/aaai.v36i1.19938.
Testo completoDreyfus, Gérard, e Yizhak Idan. "The Canonical Form of Nonlinear Discrete-Time Models". Neural Computation 10, n. 1 (1 gennaio 1998): 133–64. http://dx.doi.org/10.1162/089976698300017926.
Testo completoWang, RuiXue, Kaikang Chen, Bo Zhao, Liming Zhou, Licheng Zhu, Chengxu Lv, Zhenhao Han, Kunlei Lu, Xuguang Feng e Siyuan Zhao. "Construction of Full-Space State Model and Prediction of Plant Growth Information". Journal of the ASABE 68, n. 2 (2025): 133–46. https://doi.org/10.13031/ja.16165.
Testo completoJohn, Dr Jogi, Babita Prasad, Bhushan Murkute, Manav Patil, Aditya Agrawal e Uday Shahu. "Battery Lifespan Prediction Using Machine Learning and NASA Aging Dataset". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, n. 04 (3 aprile 2025): 1–9. https://doi.org/10.55041/ijsrem43585.
Testo completoWang, Niannian, Weiyi Du, Hongjin Liu, Kuankuan Zhang, Yongbin Li, Yanquan He e Zejun Han. "Fine-Grained Leakage Detection for Water Supply Pipelines Based on CNN and Selective State-Space Models". Water 17, n. 8 (9 aprile 2025): 1115. https://doi.org/10.3390/w17081115.
Testo completoMeng, Wenjie, Aiming Mu e Huajun Wang. "Efficient UNet fusion of convolutional neural networks and state space models for medical image segmentation". Digital Signal Processing 158 (marzo 2025): 104937. https://doi.org/10.1016/j.dsp.2024.104937.
Testo completoKotta, Ü., F. N. Chowdhury e S. Nõmm. "On realizability of neural networks-based input–output models in the classical state-space form". Automatica 42, n. 7 (luglio 2006): 1211–16. http://dx.doi.org/10.1016/j.automatica.2006.03.003.
Testo completoKrikelis, Konstantinos, Jin-Song Pei, Koos van Berkel e Maarten Schoukens. "Identification of structured nonlinear state–space models for hysteretic systems using neural network hysteresis operators". Measurement 224 (gennaio 2024): 113966. http://dx.doi.org/10.1016/j.measurement.2023.113966.
Testo completoPang, Shuwei, Haoyuan Lu, Qiuhong Li e Ziyu Gu. "An Improved Onboard Adaptive Aero-Engine Model Based on an Enhanced Neural Network and Linear Parameter Variance for Parameter Prediction". Energies 17, n. 12 (12 giugno 2024): 2888. http://dx.doi.org/10.3390/en17122888.
Testo completoSimionato, Riccardo, e Stefano Fasciani. "Modeling Time-Variant Responses of Optical Compressors With Selective State Space Models". Journal of the Audio Engineering Society 73, n. 3 (7 aprile 2025): 144–65. https://doi.org/10.17743/jaes.2022.0194.
Testo completoChen, Hanlin, Li'an Zhuo, Baochang Zhang, Xiawu Zheng, Jianzhuang Liu, David Doermann e Rongrong Ji. "Binarized Neural Architecture Search". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 07 (3 aprile 2020): 10526–33. http://dx.doi.org/10.1609/aaai.v34i07.6624.
Testo completoZhou, Xun, Xingyu Wu, Liang Feng, Zhichao Lu e Kay Chen Tan. "Design Principle Transfer in Neural Architecture Search via Large Language Models". Proceedings of the AAAI Conference on Artificial Intelligence 39, n. 21 (11 aprile 2025): 23000–23008. https://doi.org/10.1609/aaai.v39i21.34463.
Testo completoLiu, Qiao, Jiaze Xu, Rui Jiang e Wing Hung Wong. "Density estimation using deep generative neural networks". Proceedings of the National Academy of Sciences 118, n. 15 (8 aprile 2021): e2101344118. http://dx.doi.org/10.1073/pnas.2101344118.
Testo completoXie, Guotian. "Redundancy-Aware Pruning of Convolutional Neural Networks". Neural Computation 32, n. 12 (dicembre 2020): 2532–56. http://dx.doi.org/10.1162/neco_a_01330.
Testo completoZhang, Peng, Wenjie Hui, Benyou Wang, Donghao Zhao, Dawei Song, Christina Lioma e Jakob Grue Simonsen. "Complex-valued Neural Network-based Quantum Language Models". ACM Transactions on Information Systems 40, n. 4 (31 ottobre 2022): 1–31. http://dx.doi.org/10.1145/3505138.
Testo completoLee, JoonSeong, e . "Analysis Methodology of Inelastic Constitutive Parameter Using State Space Method and Neural Network". International Journal of Engineering & Technology 7, n. 3.34 (1 settembre 2018): 163. http://dx.doi.org/10.14419/ijet.v7i3.34.18938.
Testo completoCHEN, CHEN-YUAN, JOHN RONG-CHUNG HSU e CHENG-WU CHEN. "FUZZY LOGIC DERIVATION OF NEURAL NETWORK MODELS WITH TIME DELAYS IN SUBSYSTEMS". International Journal on Artificial Intelligence Tools 14, n. 06 (dicembre 2005): 967–74. http://dx.doi.org/10.1142/s021821300500248x.
Testo completoAbbas, H., e H. Werner. "LPV Design of Charge Control for an SI Engine Based on LFT Neural State-Space Models". IFAC Proceedings Volumes 41, n. 2 (2008): 7427–32. http://dx.doi.org/10.3182/20080706-5-kr-1001.01255.
Testo completoAbbas, H., e H. Werner. "Polytopic Quasi-LPV Models Based on Neural State-Space Models and Application to Air Charge Control of a SI Engine". IFAC Proceedings Volumes 41, n. 2 (2008): 6466–71. http://dx.doi.org/10.3182/20080706-5-kr-1001.01090.
Testo completoWang, Yiren, Lijun Wu, Yingce Xia, Tao Qin, ChengXiang Zhai e Tie-Yan Liu. "Transductive Ensemble Learning for Neural Machine Translation". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 6291–98. http://dx.doi.org/10.1609/aaai.v34i04.6097.
Testo completoZhang, Dongxiang, Ziyang Xiao, Yuan Wang, Mingli Song e Gang Chen. "Neural TSP Solver with Progressive Distillation". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 10 (26 giugno 2023): 12147–54. http://dx.doi.org/10.1609/aaai.v37i10.26432.
Testo completoRule, Michael, e Guido Sanguinetti. "Autoregressive Point Processes as Latent State-Space Models: A Moment-Closure Approach to Fluctuations and Autocorrelations". Neural Computation 30, n. 10 (ottobre 2018): 2757–80. http://dx.doi.org/10.1162/neco_a_01121.
Testo completoTuli, Shikhar, Bhishma Dedhia, Shreshth Tuli e Niraj K. Jha. "FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?" Journal of Artificial Intelligence Research 77 (6 maggio 2023): 39–70. http://dx.doi.org/10.1613/jair.1.13942.
Testo completoSensoy, Murat, Lance Kaplan, Federico Cerutti e Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Testo completo