Letteratura scientifica selezionata sul tema "Patial Frequency Domain Imaging"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Patial Frequency Domain Imaging".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Patial Frequency Domain Imaging"
Lin, Jingyu, Yebin Liu, Jinli Suo e Qionghai Dai. "Frequency-Domain Transient Imaging". IEEE Transactions on Pattern Analysis and Machine Intelligence 39, n. 5 (1 maggio 2017): 937–50. http://dx.doi.org/10.1109/tpami.2016.2560814.
Testo completoYang Hong, 杨虹, 黄远辉 Huang Yuanhui, 苗少峰 Miao Shaofeng, 宫睿 Gong Rui, 邵晓鹏 Shao Xiaopeng e 毕祥丽 Bi Xiangli. "Frequency-domain photoacoustic imaging system". Infrared and Laser Engineering 45, n. 4 (2016): 0424001. http://dx.doi.org/10.3788/irla201645.0424001.
Testo completoJiang, Shan, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu et al. "Frequency-domain diagonal extension imaging". Advanced Photonics 2, n. 03 (2 giugno 2020): 1. http://dx.doi.org/10.1117/1.ap.2.3.036005.
Testo completoZander, Dani S. "Volumetric Optical Frequency Domain Imaging". Chest 143, n. 1 (gennaio 2013): 10–12. http://dx.doi.org/10.1378/chest.12-1864.
Testo completoHaworth, Kevin J., Kenneth B. Bader, Kyle T. Rich, Christy K. Holland e T. Douglas Mast. "Frequency-domain passive cavitation imaging". Journal of the Acoustical Society of America 141, n. 5 (maggio 2017): 3458. http://dx.doi.org/10.1121/1.4987172.
Testo completoZhang, Guang-Ming, Derek R. Braden, David M. Harvey e David R. Burton. "Acoustic time-frequency domain imaging". Journal of the Acoustical Society of America 128, n. 5 (novembre 2010): EL323—EL328. http://dx.doi.org/10.1121/1.3505760.
Testo completoKonecky, Soren D. "Imaging scattering orientation with spatial frequency domain imaging". Journal of Biomedical Optics 16, n. 12 (1 dicembre 2011): 126001. http://dx.doi.org/10.1117/1.3657823.
Testo completoYun, S., G. Tearney, Johannes de Boer, N. Iftimia e B. Bouma. "High-speed optical frequency-domain imaging". Optics Express 11, n. 22 (3 novembre 2003): 2953. http://dx.doi.org/10.1364/oe.11.002953.
Testo completoHaworth, Kevin J., Kenneth B. Bader, Kyle T. Rich, Christy K. Holland e T. Douglas Mast. "Quantitative Frequency-Domain Passive Cavitation Imaging". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 64, n. 1 (gennaio 2017): 177–91. http://dx.doi.org/10.1109/tuffc.2016.2620492.
Testo completoVakoc, B. J., S. H. Yun, J. F. de Boer, G. J. Tearney e B. E. Bouma. "Phase-resolved optical frequency domain imaging". Optics Express 13, n. 14 (2005): 5483. http://dx.doi.org/10.1364/opex.13.005483.
Testo completoTesi sul tema "Patial Frequency Domain Imaging"
Ségaud, Silvère. "Multispectral optical imaging in real-time for surgery". Electronic Thesis or Diss., Strasbourg, 2022. http://www.theses.fr/2022STRAD055.
Testo completoThe deployment of technology in operating rooms dramatically accelerated over the last decades. More precisely, the surgeons’ ability to distinguish healthy from diseased tissues is still mostly based on their own subjective perception. As tissue status assessment is of upmost importance in oncologic surgery, both for tumor resection and reconstruction procedures, the ability to assess the tissues intraoperatively and in real-time over a large field is crucial for surgical act guidance. The lack of tools for biological intraoperative tissue status assessment has been the main source of motivation for this thesis work. A clinically-compatible imaging platform has been developed for oxygenation and fluorescence imaging in real-time. The capability of the platform to detect and quantify ischemia has been demonstrated through preclinical trials, by comparison with standard of care methods. Furthermore, the multimodal nature of the developed imaging device has been exploited by combining endogenous imaging of optical properties with exogenous fluorescence imaging, in the context of oncologic surgery. A fluorescence quantification technique was validated in preclinical trials with colorectal and pancreatic cancer models, highlighting the limitations of conventional fluorescence imaging
Lee, Edward Chin Wang. "Optical frequency domain imaging of human retina and choroid". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38556.
Testo completoIncludes bibliographical references (p. 81-87).
Optical coherence tomography (OCT) has emerged as a practical noninvasive technology for imaging the microstructure of the human eye in vivo. Using optical interferometry to spatially-resolve backreflections from within tissue, this high-resolution technique provides cross-sectional images of the anterior and posterior eye segments that had previously only been possible with histology. Current commercially-available OCT systems suffer limitations in speed and sensitivity, preventing them from effective screening of the retina and having a larger impact on the clinical environment. While other technological advances have addressed this problem, they are inadequate for imaging the choroid, which can be useful for evaluating choroidal disorders as well as early stages of retinal diseases. The objective of this thesis was to develop a new ophthalmic imaging method, termed optical frequency domain imaging (OFDI), to overcome these limitations. Preliminary imaging of the posterior segment of human eyes in vivo was performed to evaluate the utility of this instrument for comprehensive ophthalmic examination.
(cont.) The 1050-nm OFDI system developed for this thesis comprised a novel wavelength-swept laser that delivered 2.7 mW of average power at a sweep rate of 18.8 kHz, representing a two-order-of-magnitude improvement in speed over previously-demonstrated lasers in the 1050-nm range and below. The system, with an optical exposure level of 550 gW, achieved resolution of 10 gm in tissue and sensitivity of >92 dB over a depth range of 2.4 mm. Two healthy volunteers were imaged with the OFDI system, with 200,000 A-lines over 10.6 seconds in each imaging session. In comparison to results from a state-of-the-art spectral-domain OCT system, the OFDI system provided deeper penetration into the choroid. This thesis demonstrates OFDI's capability for comprehensive imaging of the human retina, optic disc, and choroid in vivo. The deep penetration power of the system enabled the first simultaneous visualization of retinal and choroidal vasculature without the exogenous dyes required by angiography. The combined capability for imaging microstructure and vasculature using a single instrument may be a significant factor influencing clinical acceptance of ophthalmic OFDI technology.
by Edward Chin Wang Lee.
S.M.
Heffer, Erica Leigh. "Frequency-domain optical mammography for detection and oximetry of breast tumors /". Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.
Cerca il testo completoAdviser: Sergio Fantini. Submitted to the Dept. of Electrical Engineering. Includes bibliographical references (leaves 201-202). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Van, Vorst Daryl. "Cross-hole GPR imaging : traveltime and frequency-domain full-waveform inversion". Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/51664.
Testo completoApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Yong, Kai Yaw. "Frequency domain optical techniques for imaging and spectroscopy of scattering media". Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404049.
Testo completoKujala, Naresh Gandhi Yu Ping. "Frequency domain fluorescent molecular tomography and molecular probes for small animal imaging". Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/7021.
Testo completoPetrack, Alec M. "Single-Pixel Camera Based Spatial Frequency Domain Imaging for Non-Contact Tissue Characterization". Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1596066982589817.
Testo completoPoon, Chien Sing. "Early Assessment of Burn Severity in Human Tissue with Multi-Wavelength Spatial Frequency Domain Imaging". Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1484582176416423.
Testo completoRasmussen, John C. "Development of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging system". Thesis, [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1067.
Testo completoDavies, Christopher W. "Quantification of Optical Parameters Using Frequency Domain Functional Near-Infrared Spectroscopy (FD-fNIRS)". Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559369168541587.
Testo completoLibri sul tema "Patial Frequency Domain Imaging"
Time-Frequency Transforms for Radar Imaging and Signal Analysis. Artech House Publishers, 2002.
Cerca il testo completoMoukadem, Ali, Djaffar Ould Abdeslam e Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Cerca il testo completoMoukadem, Ali, Djaffar Ould Abdeslam e Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Cerca il testo completoMoukadem, Ali, Djaffar Ould Abdeslam e Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Cerca il testo completoMoukadem, Ali, Djaffar Ould Abdeslam e Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals: The Stockwell Transform Applied on Bio-signals and Electric Signals. Wiley-Interscience, 2014.
Cerca il testo completoMoukadem, Ali, Djaffar Ould Abdeslam e Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Cerca il testo completoCapitoli di libri sul tema "Patial Frequency Domain Imaging"
Bouma, Brett E., Guillermo J. Tearney, Benjamin Vakoc e Seok Hyun Yun. "Optical Frequency Domain Imaging". In Optical Coherence Tomography, 225–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_8.
Testo completoBouma, B. E., G. J. Tearney, B. J. Vakoc e S. H. Yun. "Optical Frequency Domain Imaging". In Optical Coherence Tomography, 209–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8_7.
Testo completoAllam, Mahmoud E., e James F. Greenleaf. "Two-Dimensional Frequency Domain Phase Aberration Correction". In Acoustical Imaging, 159–64. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4419-8772-3_25.
Testo completoSubramanian, Sankaran, James B. Mitchell e Murali C. Krishna. "Time-Domain Radio Frequency EPR Imaging". In In Vivo EPR (ESR), 153–97. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0061-2_7.
Testo completoBossuyt, A., R. Luypaert, J. Van Craen, F. Deconinck e A. B. Brill. "Adaptive Frequency-Domain Filtering Of Dynamic Scintigraphies". In Information Processing in Medical Imaging, 207–15. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4261-5_15.
Testo completoMcKeon, James C. P. "Frequency Domain Filtering for Enhanced SAM Inspection of Microelectronic Components". In Acoustical Imaging, 353–61. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-8606-1_45.
Testo completoMaier, J., S. Walker e E. Gratton. "Frequency-Domain Optical Spectroscopy and Imaging of Tissues". In Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, 121–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1750-7_11.
Testo completoShonat, Ross D., e Amanda C. Kight. "Frequency Domain Imaging of Oxygen Tension in the Mouse Retina". In Advances in Experimental Medicine and Biology, 243–47. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0205-0_40.
Testo completoVerveer, Peter J., Anthony Squire e Philippe I. H. Bastiaens. "Frequency-Domain Fluorescence Lifetime Imaging Microscopy: A Window on the Biochemical Landscape of the Cell". In Methods in Cellular Imaging, 273–94. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_16.
Testo completoDong, Chen-Yuan, Christof Buehler, Peter T. C. So, Todd French e Enrico Gratton. "Biological Applications of Time-Resolved, Pump-Probe Fluorescence Microscopy and Spectroscopy in the Frequency Domain". In Methods in Cellular Imaging, 324–40. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_19.
Testo completoAtti di convegni sul tema "Patial Frequency Domain Imaging"
Lee, Zhenghong, Pedro J. Diaz e Errol M. Bellon. "Frequency domain clipping for volume rendering". In Medical Imaging 1996, a cura di Yongmin Kim. SPIE, 1996. http://dx.doi.org/10.1117/12.238477.
Testo completoGratton, E. "Techniques C: frequency domain". In Medical Optical Tomography: Functional Imaging and Monitoring, a cura di Gerhard J. Mueller. SPIE, 1993. http://dx.doi.org/10.1117/12.2283773.
Testo completoPanigrahi, Swapnesh, e Sylvain Gioux. "Spatial frequency domain imaging: frequency selection (Conference Presentation)". In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVI, a cura di Tuan Vo-Dinh, Anita Mahadevan-Jansen e Warren S. Grundfest. SPIE, 2018. http://dx.doi.org/10.1117/12.2290220.
Testo completoFischer, Mani, e Doron Shaked. "Frequency domain design of cluster dot screens". In Electronic Imaging 2006, a cura di Reiner Eschbach e Gabriel G. Marcu. SPIE, 2006. http://dx.doi.org/10.1117/12.641903.
Testo completoMantulin, William W., Todd E. French e Enrico Gratton. "Optical imaging in the frequency domain". In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, a cura di David M. Harris, Carl M. Penney e Abraham Katzir. SPIE, 1993. http://dx.doi.org/10.1117/12.147495.
Testo completoChue-Sang, Joseph, Aaron M. Goldfain, Jeeseong Hwang e Thomas A. Germer. "Spatial frequency domain Mueller matrix imaging". In Polarized light and Optical Angular Momentum for biomedical diagnostics, a cura di Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson e Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2576350.
Testo completoSandhu, Gursharan Yash Singh, Cuiping Li, Olivier Roy, Erik West, Katelyn Montgomery, Michael Boone e Neb Duric. "Frequency-domain ultrasound waveform tomography breast attenuation imaging". In SPIE Medical Imaging, a cura di Neb Duric e Brecht Heyde. SPIE, 2016. http://dx.doi.org/10.1117/12.2218374.
Testo completoSandhu, Gursharan Yash, Erik West, Cuiping Li, Olivier Roy e Neb Duric. "3D frequency-domain ultrasound waveform tomography breast imaging". In SPIE Medical Imaging, a cura di Neb Duric e Brecht Heyde. SPIE, 2017. http://dx.doi.org/10.1117/12.2254399.
Testo completoEl-Sharkawy, Yasser H., e Bassam Abd-Elwahab. "Nonintrusive noncontacting frequency-domain photothermal radiometry of caries". In SPIE Medical Imaging. SPIE, 2010. http://dx.doi.org/10.1117/12.843769.
Testo completodeJong, Max, Guy Perkins, Hamid Dehghani e Adam Eggebrecht. "Multifrequency frequency domain diffuse optical tomography". In Diffuse Optical Spectroscopy and Imaging VIII, a cura di Davide Contini, Yoko Hoshi e Thomas D. O'Sullivan. SPIE, 2021. http://dx.doi.org/10.1117/12.2615390.
Testo completoRapporti di organizzazioni sul tema "Patial Frequency Domain Imaging"
Khavandi, Ali. Treatment of a Bifurcation Lesion Using a Two-stent ‘Reverse’ T and Small Protrusion Technique Via a Glidesheath Slender® and Optimisation using 3D Optical Frequency Domain Imaging. Radcliffe Cardiology, novembre 2017. http://dx.doi.org/10.15420/rc.2017.m018.
Testo completo