Letteratura scientifica selezionata sul tema "Phase change materials"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Phase change materials".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Phase change materials"

1

Rajpurohit, Dhruv, Amena I. Tamboli e Chinmay Jadhav Arpit Gohokar Sadanand Nanote Subham Dhote. "Significance of Phase Change Materials in Building Construction". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30 giugno 2018): 1686–91. http://dx.doi.org/10.31142/ijtsrd14473.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Raoux, Simone, Feng Xiong, Matthias Wuttig e Eric Pop. "Phase change materials and phase change memory". MRS Bulletin 39, n. 8 (agosto 2014): 703–10. http://dx.doi.org/10.1557/mrs.2014.139.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Raoux, Simone, Daniele Ielmini, Matthias Wuttig e Ilya Karpov. "Phase change materials". MRS Bulletin 37, n. 2 (febbraio 2012): 118–23. http://dx.doi.org/10.1557/mrs.2011.357.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

FLEURY, ALFRED F. "Phase-Change Materials". Heat Transfer Engineering 17, n. 2 (aprile 1996): 72–74. http://dx.doi.org/10.1080/01457639608939875.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Raoux, Simone. "Phase Change Materials". Annual Review of Materials Research 39, n. 1 (agosto 2009): 25–48. http://dx.doi.org/10.1146/annurev-matsci-082908-145405.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Rodenbach, Peter, Raffaella Calarco, Karthick Perumal, Ferhat Katmis, Michael Hanke, André Proessdorf, Wolfgang Braun et al. "Epitaxial phase-change materials". physica status solidi (RRL) - Rapid Research Letters 6, n. 11 (22 ottobre 2012): 415–17. http://dx.doi.org/10.1002/pssr.201206387.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Park, Sung-Jin, In-Soo Kim, Sang-Kyun Kim e Se-Young Choi. "Phase Change Characteristics of Sb-Based Phase Change Materials". Korean Journal of Materials Research 18, n. 2 (25 febbraio 2008): 61–64. http://dx.doi.org/10.3740/mrsk.2008.18.2.061.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Lu, Li Bing, Jing Wang, Meng Gao e Dong Li. "Slope Effect of Phase Change Materials in Phase Change Roof". Advanced Materials Research 671-674 (marzo 2013): 1835–38. http://dx.doi.org/10.4028/www.scientific.net/amr.671-674.1835.

Testo completo
Abstract (sommario):
Under summer climatic features of Daqing area in China, numerical simulation on the unsteady heat transfer characteristic of phase change roof was investigated, considering direct influence of solar radiation. The main influencing factor of roof slope in the phase change roof was analyzed in this paper. The results show that, increasing the roof slope is beneficial to promote the effect of heat-insulating and temperature-reducing of phase change roof, whereas the extent of the ascension is weak. Different slopes in roof structure have basically no influence on the delay effect.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Yamada, Noboru. "Erasable Phase-Change Optical Materials". MRS Bulletin 21, n. 9 (settembre 1996): 48–50. http://dx.doi.org/10.1557/s0883769400036368.

Testo completo
Abstract (sommario):
Almost all stones on a lane will become glassy if they are melted and quenched. They will become transparent and quite different in appearance from before vitrification. This visible change constitutes the recording of information. We might refer to the stone as “1 bit.” If the vitrified stone is subsequently kept at a high temperature under its melting point, it will lose its transparency and turn back to the appearance it had before melting and quenching. Thus the “1 bit” is erased. This is the simple mechanism of an erasable phase-change optical memory. In practical systems, a laser beam focused into a diffraction-limited spot is used for recording. This enables the spatial size of the “1 bit” to be very small (of submicron order) so that the recording density is very high.Figure 1 shows a transmission-electron-microscope (TEM) photograph of an actual optical disk. The elliptical smooth areas are recording marks in the amorphous state that were formed by high-power and short-duration laser irradiation. The shortest mark length is about 0.5 μm. The area surrounding the amorphous marks is in the crystalline state and consists of small grains. The two states differ from each other in optical properties such as refractive indices and optical absorption coefficients. Accordingly when the bits are illuminated with low-intensity laser light, the reflected light from the amorphous and crystalline regions is different and may be detected as information signals.The amorphous marks are erased by heating above the glass-transition temperature by laser irradiation, but with lower power than is used in the case of recording.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Piarristeguy, Andrea, Annie Pradel e Jean-Yves Raty. "Phase-change materials and rigidity". MRS Bulletin 42, n. 01 (gennaio 2017): 45–49. http://dx.doi.org/10.1557/mrs.2016.302.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Tesi sul tema "Phase change materials"

1

Jost, Peter Christian Georg [Verfasser]. "Charge transport in phase-change materials / Peter Christian Georg Jost". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1043523359/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Luckas, Jennifer. "Electronic transport in amorphous phase-change materials". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00743474.

Testo completo
Abstract (sommario):
Les matériaux à changement de phase montrent la combinaison exceptionnelle d'un contraste énorme dans leurs propriétés physiques entre la phase amorphe et cristalline allié à une cinétique de changement de phase extrêmement rapide. La grande différence en résistivité permet leur application dans les mémoires numériques. De plus, cette classe de matériaux montre dans leur état vitreux des phénomènes de transport électronique caractéristiques. Le seuil de commutation dénote la chute de la résistivité dans l'état amorphe au delà d'un champ électrique critique. Le phénomène de seuil de commutation permet la transition de phase en appliquant des tensions relativement faibles. Au-dessous de cette valeur critique l'état désordonné montre une conductivité d'obscurité activée en température ainsi qu'une résistance - dans les cellules mémoires et les couches minces également - qui augmente avec le temps. Cette évolution de la résistivité amorphe entrave le stockage à plusieurs niveaux, qui offrirait la possibilité d'accroître la capacité ou la densité de stockage considérablement. Comprendre les origines physiques de ces deux phénomènes est crucial pour développer de meilleures mémoires à changement de phase. Bien que ces deux phénomènes soient généralement attribués aux défauts localisés, la connaissance de la distribution de défauts dans les matériaux amorphes à changement de phase est assez limitée. Cette thèse se concentre sur la densité des défauts mesurée dans différents verres chalcogénures présentant l'effet de seuil de commutation. Sur la base d'expériences de photo courant modulé (MPC) et de spectroscopie par déviation photothermique, un modèle sophistiqué des défauts a été développé pour GeTe amorphe (a-GeTe) mettant en évidence les états de la bande de valence et plusieurs défauts. Cette étude sur a-GeTe montre que l'analyse des données MPC peut être grandement améliorée en prenant en compte la variation de la bande de l'énergie interdite avec la température. Afin de mieux appréhender l'évolution de la résistivité amorphe, la présente étude porte sur l'évolution avec les recuits et le vieillissement de la résistivité, de l'énergie d'activation du courant d'obscurité, de la densité des défauts, du stress mécanique, de l'environnement atomique et de l'énergie de la bande interdite mesurée par des méthodes optiques sur les couches minces de a-GeTe. Le recuit d'un échantillon entraîne un élargissement de la bande interdite et de l'énergie d'activation du courant d'obscurité. De plus, la technique MPC a révélé une diminution des défauts profonds dans les couches minces de a-GeTe vieillies. Ces résultats illustrent l'impact de l'annihilation des défauts et de l'élargissement de la bande interdite sur l'évolution de la résistivité des matériaux à changement de phase amorphe. Cette thèse présente également une étude sur les alliages à changement de phase GeSnTe. En augmentant la concentration d'étain, on observe une décroissance systématique de la résistivité amorphe, de l'énergie d'activation du courant d'obscurité, de la largeur de bande interdite et de la densité des défauts, qui conduisent à une résistivité amorphe plus stables dans les compositions riches en étain comme a-Ge2Sn2Te4. L'étude sur les alliages GeSnTe montre que les matériaux à changement de phase ayant une résistivité amorphe plus stable présentent une faible énergie d'activation du courant d'obscurité. À l'exemple du Ge2Sn2Te4 et GeTe la présente étude montre un lien étroit entre l'évolution de la résistivité et la relaxation du stress mécanique. L'étude sur les verres chalcogénures montrent que les matériaux ayant un grand champ d'électrique de seuil, bien connu d'après la littérature, présentent aussi une grande densité de défauts. Ce résultat implique que l'origine du phénomène de seuil de commutation se trouve dans un mécanisme de génération à travers la bande interdite et de recombinaison dans les défauts profonds comme proposé par D. Adler.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bugaje, Idris M. "Thermal energy storage in phase change materials". Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335920.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Huang, Bolong. "Theoretical study on phase change memory materials". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609986.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Oliver, David Elliot. "Phase-change materials for thermal energy storage". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/17910.

Testo completo
Abstract (sommario):
There is a current requirement for technologies that store heat for both domestic and industrial applications. Phase-change materials (PCMs) represent an important class of materials that offer potential for heat storage. Heat-storage systems are required to undergo multiple melt/freeze cycles without any change in melting-crystallisation point and heat output. Salt hydrates are attractive candidates on account of their high energy densities, but there are issues associated with potential crystallisation of lower-hydrates, long-term stability, and reliable nucleation. An extensive review of the PCMs in the literature, combined with an evaluation of commercially available PCMs led to the conclusion that many of the reported PCMs, lack at least one of the key requirements required for use as a heat-storage medium. The focus of this research was therefore to identify and characterise new PCM compositions with tailored properties. New PCM compositions based of sodium acetate trihydrate were developed, which showed improved properties through the use of selective polymers that retard the nucleation of undesirable anhydrous sodium acetate. Furthermore, the mechanism of nucleation of sodium acetate trihydrate by heterogeneous additives has been investigated using variable-temperature powder X-ray diffraction. This study showed that when anhydrous Na2HPO4 was introduced to molten sodium acetate trihydrate at 58°C the hydrogenphosphate salt is present as the dihydrate. On heating to temperatures in the range 75-90°C the dihydrate was observed to dehydrate to form anhydrous Na₂HPO4. This result explains the prior observation that the nucleator is deactivated on heating. The depression of melting point of sodium acetate trihydrate caused by the addition of lithium acetate dihydrate has also been investigated using differential scanning calorimetry and powder X-ray diffraction. It has been possible to tune the melting point of sodium acetate trihydrate thereby modifying its thermal properties. Studies of the nucleation of sodium thiosulfate pentahydrate, a potential PCM, led to the structural characterisation of six new hydrates using single crystal Xray diffraction. All of these hydrates can exist in samples with the pentahydrate composition at temperatures ranging from 20°C to 45°C. These hydrates are: α-Na₂S₂O₃·2H₂O, which formed during the melting of α-Na₂S₂O₃·5H₂O; two new pentahydrates, β-Na₂S₂O₃·5H₂O and γ-Na₂S₂O₃·5H₂O; Na₂S₂O₃·1.33 H₂O, β-Na₂S₂O₃·2H₂O and Na₂S₂O₃·3.67 H₂O, which formed during the melting of β- Na₂S₂O₃·5H₂O. Furthermore, new PCMs in the 75-90°C range were identified. The commercial impact and route to market of several of the PCMs are discussed in the final chapter.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kasali, Suraju Olawale. "Thermal diodes based on phase-change materials". Thesis, Poitiers, 2021. http://www.theses.fr/2021POIT2254.

Testo completo
Abstract (sommario):
Nous étudions dans cette thèse la rectification thermique de diodes thermiques radiatives ou conductive constituées de matériaux à changement de phase.Cette thèse est divisée en trois parties. Dans les premières parties, nous modélisons comparativement les performances d’une diode thermique conductive sphérique et cylindrique constitués de VO2 présentant un transition de phase et des matériaux n’en présentant pas. Des expressions analytiques aux bornes des diodes sont dérivées. Des flux thermiques, des facteurs de rectifications ainsi que les profils de température à l’intérieur de la diode sont obtenus. Nos résul-tats montrent que les différentes géométries de diodes ont un impact significatif sur les profils de température et les flux thermiques, mais moins un sur les facteurs de rectification. Dans ce travail, nous avons obtenu des facteurs de rectification maximaux allant jusqu’à 20.8% et 20.7%, qui sont supérieurs à celui prédit pour une diode plane constituée de VO2. Nous montrons également que des facteurs de rectification similaires à ceux obtenus avec le VO2 dans les géométries sphériques et cylindriques peuvent être atteints avec des matériaux à changement de phase dont le contraste de conductivité est plus important que dans le cas du VO2. Dans la deuxième partie, nous étudions la rectification de diodes thermiques constituées de deux matériaux à changement de phase. Avec, l’idée de générer un facteur de redressement plus élevé que dans le cas d’une diode thermique conductive ne comprenant qu’un matériau à changement de phase unique. Là encore, le travail a conduit à l’établissement d’expressions explicites pour les profils de température, les flux thermiques et le facteur de rectification. Nous avons obtenu un facteur de rectification optimal de 60% avec une variation de température de 250 K couvrant les transitions métal-isolant des deux matériaux. Dans la troisième partie de notre travail, nous avons modélisé et optimisé la rectification thermique de diodes thermiques planes, cylindriques et sphériques radiatives à base de deux matériaux à changement de phase. Nous savons calculer et analyser les facteurs de rectification de ces trois diodes et obtenu les facteurs de rectification optimaux respectifs pour les trois géométries 82%, 86% et 90.5%. Nos résultats montrent que la géométrie sphérique est la meilleure pour optimiser la rectification des courants thermiques radiatifs. De plus, des facteurs de rectification potentiellement supérieurs à ceux prédits ici peuvent être réalisés en utilisant deux matériaux à changement de phase avec des contrastes d’émissivités plus élevés que ceux proposés ici. Ces résultats analytiques et graphiques fournissent un guide utile pour optimiser les facteurs de rectification des diodes thermiques conductives et radiatifs basées sur des matériaux à changement de phase de géométries différentes
The thermal rectification of conductive and radiative thermal diodes based on phase-change materials, whose thermal conductivities and effective emissivities significant change within a narrow range of temperatures, is theoretically studied and optimized in different geometries. This thesis is divided into three parts. In the first part, we comparatively model the performance of a spherical and cylindrical conductive thermal diodes operating with vanadium dioxide (VO2) and non-phase-change materials, and derive analytical expressions for the heat flows, temperature profiles and optimal rectification factors for both diodes. Our results show that different diode geometries have a significant impact on the temperature profiles and heat flows, but less one on the rectification factors. We obtain maximum rectification factors of up to 20.8% and 20.7%, which are higher than the one predicted for a plane diode based on VO2. In addition, it is shown that higher rectification factors could be generated by using materials whose thermal conductivity contrast is higher than that of VO2. In the second part, on the other hand, we theoretically study the thermal rectification of a conductive thermal diode based on the combined effect of two phase-change materials. Herein, the idea is to generate rectification factors higher than that of a conductive thermal diode operating with a single phase-change material. This is achieved by deriving explicit expressions for the temperature profiles, heat fluxes and rectification factor. We obtain an optimal rectification factor of 60% with a temperature variation of 250 K spanning the metal-insulator transitions of VO2 and polyethylene. This enhancement of the rectification factor leads us to the third part of our work, where we model and optimize the thermal rectification of a plane, cylindrical and spherical radiative thermal diodes based on the utilization of two phase-change materials. We analyze the rectification factors of these three diodes and obtain the following optimal rectification factors of 82%, 86% and 90.5%, respectively. The spherical geometry is thus the best shape to optimize the rectification of radiative heat currents. In addition, potential rectification factors greater than the one predicted here can be realized by utilizing two phase-change materials with higher emissivities contrasts than the one proposed here. Our analytical and graphical results provide a useful guide for optimizing the rectification factors of conductive and radiative thermal diodes based on phase-change materials with different geometries
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Milisic, Edina. "Modelling of energy storage using phase-change materials (PCM materials)". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23506.

Testo completo
Abstract (sommario):
Unfortunately the global conventional fuels in reserves are running out while the world energy consumption is increasing very fast. All scientists agreed that Renewable energies is one of the best solutions for energy supply in many parts of the world. Renewable energies are solar energy, wind energy, bio energy, geothermal energy, tidal energy, and hydropower. Approximately all these forms of energy are hampered by their high costs. Moreover, solar energy, wind energy and tidal energy are characterized by their intermittent nature, as they are not available all the time. This intermittent problem can be solved by energy storage.Energy storage components improve the energy efficiency of systems by reducing the mismatch between supply and demand. For this purpose, phase-change materials are particularly attractive since they provide a high-energy storage density at a constant temperature which corresponds to the phase transition temperature of the material. The aim of this thesis is to Is to describe the state of the art progress in applying PCM materials for energy storage (essentially in tanks), and opportunities of their future applications, describe physical properties of typically used PCM materials, present a mathematical model of the energy balance during the energy storage (charge) and energy discharge from the PCM material. Mathematical model is based on one-dimensional (1D) analysis. The mathematical model consist of charging process and discharging process. During charging process the heat transfer fluid passes through the storage tank in order to transfer its thermal energy to the phase change material tube. During the discharging process, the cold water passes through the storage tank to acquire the thermal energy stored by the phase change material tube. Different solutions utilizing PCM was assessed. It was presented different Phase Change Materials for energy storage. This assessment indicated that salt hydrates are the most energy intensive of the PCM possibilities. When we use the Paraffin for energy storage we had less energy stored then with salt hydrates used like medium for energy storage. This assessment indicated that when we use PCM as a medium for energy storage we accumulate significantly more energy than in the case when we use water as a medium for energy storage.There are some weaknesses in the PCM model. It was assumed that the temperature in the tank was uniform. This will not apply for the real case where the heat transfer fluid temperature will increase while transferring through the tank. For a realistic case, the temperature of the first elements will decrease rapidly because of large temperature difference between the heat transfer fluid and the PCMs in the tank.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Aboujaoude, Andrea E. "Nanopatterned Phase-Change Materials for High-Speed, Continuous Phase Modulation". University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1538243834791942.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Bruns, Gunnar [Verfasser]. "Electronic switching in phase-change materials / Gunnar Bruns". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1020843993/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Hong, Yan. "Encapsulated nanostructured phase change materials for thermal management". Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4929.

Testo completo
Abstract (sommario):
A major challenge of developing faster and smaller microelectronic devices is that high flux of heat needs to be removed efficiently to prevent overheating of devices. The conventional way of heat removal using liquid reaches a limit due to low thermal conductivity and limited heat capacity of fluids. Adding solid nanoparticles into fluids has been proposed as a way to enhance thermal conductivity of fluids, but recent results show inconclusive anomalous enhancements in thermal conductivity. A possible way to improve heat transfer is to increase the heat capacity of liquid by adding phase change nanoparticles with large latent heat of fusion into the liquid. Such nanoparticles absorb heat during solid to liquid phase change. However, the colloidal suspension of bare phase change nanoparticles has limited use due to aggregation of molten nanoparticles, irreversible sticking on fluid channels, and dielectric property loss. This dissertation describes a new method to enhance the heat transfer property of a liquid by adding encapsulated phase change nanoparticles (nano-PCMs), which will absorb thermal energy during solid-liquid phase change and release heat during freeze. Specifically, silica encapsulated indium nanoparticles, and polymer encapsulated paraffin (wax) nanoparticles have been prepared using colloidal method, and dispersed into poly-alpha]-olefin (PAO) and water for high temperature and low temperature applications, respectively. The shell, with a higher melting point than the core, can prevent leakage or agglomeration of molten cores, and preserve the dielectric properties of the base fluids. Compared to single phase fluids, heat transfer of nanoparticle-containing fluids have been significantly enhanced due to enhanced heat capacities. The structural integrity of encapsulation allows repeated uses of nanoparticles for many cycles.; By forming porous semi crystalline silica shells obtained from water glass, supercooling has been greatly reduced due to low energy barrier of heterogeneous nucleation. Encapsulated phase change nanoparticles have also been added into exothermic reaction systems such as catalytic and polymerization reactions to effectively quench local hot spots, prevent thermal runaway, and change product distribution. Specifically, silica-encapsulated indium nanoparticles, and silica encapsulated paraffin (wax) nanoparticles have been used to absorb heat released in catalytic reaction, and to mitigate the gel effect during polymerization, respectively. The reaction rates do not raise significantly owing to thermal buffering using phase change nanoparticles at initial stage of thermal runaway. The effect of thermal buffering depends on latent heats of fusion of nanoparticles, and heat releasing kinetics of catalytic reactions and polymerizations. Micro/nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions.
ID: 029809237; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 164-191).
Ph.D.
Doctorate
Mechanical Materials and Aerospace Engineering
Engineering and Computer Science
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Libri sul tema "Phase change materials"

1

Matthias, Wuttig, e SpringerLink (Online service), a cura di. Phase Change Materials. Boston, MA: Springer-Verlag US, 2009.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Raoux, Simone, e Matthias Wuttig, a cura di. Phase Change Materials. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84874-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Said, Zafar, e Adarsh Kumar Pandey, a cura di. Nano Enhanced Phase Change Materials. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5475-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Farid, Mohammed, Amar Auckaili e Gohar Gholamibozanjani. Thermal Energy Storage with Phase Change Materials. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367567699.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Fleischer, Amy S. Thermal Energy Storage Using Phase Change Materials. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20922-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Delgado, João M. P. Q., Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães e Vitor Abrantes. Thermal Energy Storage with Phase Change Materials. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97499-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Koga, Shumon, e Miroslav Krstic. Materials Phase Change PDE Control & Estimation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58490-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Phase change in mechanics. Heidelberg: Springer Verlag, 2012.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Junji, Tominaga, e SpringerLink (Online service), a cura di. Chalcogenides: Metastability and Phase Change Phenomena. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Kanesalingam, Sinnappoo, e Rajkishore Nayak. Sustainable Phase Change and Polymeric Water Absorbent Materials. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5750-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Più fonti

Capitoli di libri sul tema "Phase change materials"

1

Kumar, Navin, e Debjyoti Banerjee. "Phase Change Materials". In Handbook of Thermal Science and Engineering, 2213–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-26695-4_53.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Jarrar, Rabab. "Phase Change Materials". In Advances in Energy Materials, 205–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50108-2_9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Du, Qingyang. "Phase Change Materials". In Emergent Micro- and Nanomaterials for Optical, Infrared, and Terahertz Applications, 239–59. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003202608-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Beysens, Daniel. "Phase Change Materials". In The Physics of Dew, Breath Figures and Dropwise Condensation, 233–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90442-5_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Cuevas-Diarte, M. À., e D. Mondieig. "Phase Change Materials". In Physical Chemistry in Action, 291–304. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68727-4_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kumar, Navin, e Debjyoti Banerjee. "Phase Change Materials". In Handbook of Thermal Science and Engineering, 1–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32003-8_53-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Lam, Chung H. "History of Phase Change Memories". In Phase Change Materials, 1–14. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84874-7_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Yamada, Noboru. "Development of Materials for Third Generation Optical Storage Media". In Phase Change Materials, 199–226. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84874-7_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Milliron, Delia J., Qiang Huang e Yu Zhu. "Novel Deposition Methods". In Phase Change Materials, 227–48. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84874-7_11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Shi, Luping. "Optical Memory: From 1st to 3rd Generation and its Future". In Phase Change Materials, 251–84. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84874-7_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Phase change materials"

1

Ren, Kun, Feng Rao, Zhitang Song, Min Zhu, Liangcai Wu, Bo Liu e songlin Feng. "Phase change materials for multi-level storage phase change memory". In 2012 International Workshop on Information Data Storage and Ninth International Symposium on Optical Storage, a cura di Fuxi Gan e Zhitang Song. SPIE, 2013. http://dx.doi.org/10.1117/12.2016744.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Uemura, Takahiro, Hisashi Chiba, Taiki Yoda, Yuto Moritake, Yusuke Tanaka e Masaya Notomi. "Photonic topological phase transition with phase-change materials". In CLEO: Applications and Technology. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.jw2d.11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Shim, Yonghyun, Gwendolyn Hummel e Mina Rais-Zadeh. "RF switches using phase change materials". In 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2013. http://dx.doi.org/10.1109/memsys.2013.6474221.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Novielli, G., A. Ghetti, E. Varesi, A. Mauri e R. Sacco. "Atomic migration in phase change materials". In 2013 IEEE International Electron Devices Meeting (IEDM). IEEE, 2013. http://dx.doi.org/10.1109/iedm.2013.6724683.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Sanphuang, Varittha, Nima Ghalichechian, Niru K. Nahar e John L. Volakis. "Phase change materials for reconfigurable systems". In 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2014. http://dx.doi.org/10.1109/usnc-ursi.2014.6955591.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Chen, M., e K. A. Rubin. "Progress Of Erasable Phase-Change Materials". In OE/LASE '89, a cura di Gordon R. Knight e Clark N. Kurtz. SPIE, 1989. http://dx.doi.org/10.1117/12.952755.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Zhang, Hongyan. "Research Progress of Phase Change Materials". In 7th International Conference on Management, Education, Information and Control (MEICI 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/meici-17.2017.120.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Raoux, S., C. T. Rettner, Yi-Chou Chen, J. Jordan-Sweet, Yuan Zhang, M. Caldwell, H. S. P. Wong, D. Milliron e J. Cha. "Scaling properties of phase change materials". In 2007 Non-Volatile Memory Technology Symposium. IEEE, 2007. http://dx.doi.org/10.1109/nvmt.2007.4389940.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Koenig, J. D., H. Boettner, Jan Tomforde e Wolfgang Bensch. "Thermoelectric properties of phase-change materials". In 2007 26th International Conference on Thermoelectrics (ICT 2007). IEEE, 2007. http://dx.doi.org/10.1109/ict.2007.4569502.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Zhang, Yifei, Junying Li, Jeffrey Chou, Zhuoran Fang, Anupama Yadav, Hongtao Lin, Qingyang Du et al. "Broadband Transparent Optical Phase Change Materials". In CLEO: Applications and Technology. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_at.2017.jth5c.4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Phase change materials"

1

Montoya, Miguel A., Daniela Betancourt-Jiminez, Mohammad Notani, Reyhaneh Rahbar-Rastegar, Jeffrey P. Youngblood, Carlos J. Martinez e John E. Haddock. Environmentally Tuning Asphalt Pavements Using Phase Change Materials. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317369.

Testo completo
Abstract (sommario):
Environmental conditions are considered an important factor influencing asphalt pavement performance. The addition of modifiers, both to the asphalt binder and the asphalt mixture, has attracted considerable attention in potentially alleviating environmentally induced pavement performance issues. Although many solutions have been developed, and some deployed, many asphalt pavements continue to prematurely fail due to environmental loading. The research reported herein investigates the synthetization and characterization of biobased Phase Change Materials (PCMs) and inclusion of Microencapsulated PCM (μPCM) in asphalt binders and mixtures to help reduce environmental damage to asphalt pavements. In general, PCM substances are formulated to absorb and release thermal energy as the material liquify and solidify, depending on pavement temperature. As a result, PCMs can provide asphalt pavements with thermal energy storage capacities to reduce the impacts of drastic ambient temperature scenarios and minimize the appearance of critical temperatures within the pavement structure. By modifying asphalt pavement materials with PCMs, it may be possible to "tune" the pavement to the environment.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Khodadai, Jay. Nanostructure-enhanced Phase Change Materials (NePCM) and HRD. Office of Scientific and Technical Information (OSTI), novembre 2013. http://dx.doi.org/10.2172/1414272.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Benson, D. K., J. D. Webb, R. W. Burrows, J. D. O. McFadden e C. Christensen. Materials research for passive solar systems: solid-state phase-change materials. Office of Scientific and Technical Information (OSTI), marzo 1985. http://dx.doi.org/10.2172/5923397.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Lin, Shu-Hwa, Lynn M. Boorady e Chih-Pong Chang. Firefighter Hood for Cooling by Exploring Phase Change Materials. Ames: Iowa State University, Digital Repository, novembre 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-438.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Lauf, R. J., e C. Jr Hamby. Metallic phase-change materials for solar dynamic energy storage systems. Office of Scientific and Technical Information (OSTI), dicembre 1990. http://dx.doi.org/10.2172/6241485.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Douglas C. Hittle. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE. Office of Scientific and Technical Information (OSTI), ottobre 2002. http://dx.doi.org/10.2172/820428.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Campbell, Kevin. Phase Change Materials as a Thermal Storage Device for Passive Houses. Portland State University Library, gennaio 2000. http://dx.doi.org/10.15760/etd.201.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Rathgeber, Christoph. Properties of Phase Change Materials (PCM) in the Lab Environment and under Application Conditions. IEA SHC Task 58, giugno 2021. http://dx.doi.org/10.18777/ieashc-task58-2021-0002.

Testo completo
Abstract (sommario):
Deliverable 1 of Subtask 3P is an inventory of properties of Phase Change Materials (PCM) that change comparing experiments in the lab environment with tests under application conditions. Examples where no change is observed are also included.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Moheisen, Ragab M., Keith A. Kozlowski, Aly H. Shaaban, Christian D. Rasmussen, Abdelfatah M. Yacout e Miriam V. Keith. Utilization of Phase Change Materials (PCM) to Reduce Energy Consumption in Buildings. Fort Belvoir, VA: Defense Technical Information Center, settembre 2011. http://dx.doi.org/10.21236/ada554348.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Nallar, Melisa, e Amelia Gelina. Enhancing building thermal comfort : a review of phase change materials in concrete. Engineer Research and Development Center (U.S.), settembre 2023. http://dx.doi.org/10.21079/11681/47679.

Testo completo
Abstract (sommario):
The DoD accounts for over 1% of the country’s total electricity consumption. However, DoD bases heavily rely on vulnerable commercial power grids, susceptible to disruptions from outdated infrastructure, weather-related incidents, and direct attacks. To enhance energy efficiency and resilience, it is imperative to address energy demand in buildings, especially heating and cooling. This study focuses on phase change materials (PCMs) incorporated into concrete to enhance thermal control and reduce energy consumption. Though PCMs have shown promise in heat transfer and energy storage applications, their integration into concrete faces challenges. Concerns include potential reduction in compressive strength, impacts on workability and setting time, effects on density and porosity, durability, and higher cost than traditional concrete. This report examines current obstacles hindering the use of PCMs in concrete and proposes opportunities for extensive research and application. By selecting appropriate PCMs and additives, comparable strength to control samples can be achieved. Moreover, specific techniques for incorporating PCMs into concrete demonstrate greater effectiveness. Embracing PCMs in concrete can significantly contribute to energy-efficient and resilient DoD installations.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia