Articoli di riviste sul tema "Plasmons Tamm"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Plasmons Tamm".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Balevičius, Zigmas. "Strong Coupling between Tamm and Surface Plasmons for Advanced Optical Bio-Sensing". Coatings 10, n. 12 (5 dicembre 2020): 1187. http://dx.doi.org/10.3390/coatings10121187.
Testo completoBuchnev, Oleksandr, Alexandr Belosludtsev, Victor Reshetnyak, Dean R. Evans e Vassili A. Fedotov. "Observing and controlling a Tamm plasmon at the interface with a metasurface". Nanophotonics 9, n. 4 (18 marzo 2020): 897–903. http://dx.doi.org/10.1515/nanoph-2019-0514.
Testo completoIorsh, I., P. V. Panicheva, I. A. Slovinskii e M. A. Kaliteevski. "Coupled Tamm plasmons". Technical Physics Letters 38, n. 4 (aprile 2012): 351–53. http://dx.doi.org/10.1134/s1063785012040074.
Testo completoChen, Yikai, Douguo Zhang, Liangfu Zhu, Qiang Fu, Ruxue Wang, Pei Wang, Hai Ming, Ramachandram Badugu e Joseph R. Lakowicz. "Effect of metal film thickness on Tamm plasmon-coupled emission". Phys. Chem. Chem. Phys. 16, n. 46 (2014): 25523–30. http://dx.doi.org/10.1039/c4cp04031g.
Testo completoVijisha, M. V., Jagadeesan Ramesh, Chellaiah Arunkumar e K. Chandrasekharan. "Impressive nonlinear optical responses of a cationic porphyrin derivative in a flexible all-polymer Bragg stack on optical Tamm mode coupling". Journal of Materials Chemistry C 8, n. 36 (2020): 12689–97. http://dx.doi.org/10.1039/d0tc01874k.
Testo completoPyatnov, Maxim V., Rashid G. Bikbaev, Ivan V. Timofeev, Ilya I. Ryzhkov, Stepan Ya Vetrov e Vasily F. Shabanov. "Tamm Plasmons in TiO2 Nanotube Photonic Crystals". Photonics 10, n. 1 (6 gennaio 2023): 64. http://dx.doi.org/10.3390/photonics10010064.
Testo completoAuguié, Baptiste, Axel Bruchhausen e Alejandro Fainstein. "Critical coupling to Tamm plasmons". Journal of Optics 17, n. 3 (13 febbraio 2015): 035003. http://dx.doi.org/10.1088/2040-8978/17/3/035003.
Testo completoLeuthold, Juerg, e Alexander Dorodnyy. "On-demand emission from Tamm plasmons". Nature Materials 20, n. 12 (21 ottobre 2021): 1595–96. http://dx.doi.org/10.1038/s41563-021-01128-7.
Testo completoShagurina, A., S. Kutrovskaya, I. Skryabin e A. Kel’. "AFM lithography for TAMM plasmons observation". Journal of Physics: Conference Series 951 (gennaio 2018): 012021. http://dx.doi.org/10.1088/1742-6596/951/1/012021.
Testo completoPühringer, Gerald, Cristina Consani e Bernhard Jakoby. "Impact of Different Metals on the Performance of Slab Tamm Plasmon Resonators". Sensors 20, n. 23 (28 novembre 2020): 6804. http://dx.doi.org/10.3390/s20236804.
Testo completoZhang, Cheng, Kai Wu, Vincenzo Giannini e Xiaofeng Li. "Planar Hot-Electron Photodetection with Tamm Plasmons". ACS Nano 11, n. 2 (26 gennaio 2017): 1719–27. http://dx.doi.org/10.1021/acsnano.6b07578.
Testo completoLiu, Hai, Xiudong Sun, Fengfeng Yao, Yanbo Pei, Haiming Yuan e Hua Zhao. "Controllable Coupling of Localized and Propagating Surface Plasmons to Tamm Plasmons". Plasmonics 7, n. 4 (10 giugno 2012): 749–54. http://dx.doi.org/10.1007/s11468-012-9369-x.
Testo completoLiu, Hai, Xiudong Sun, Fengfeng Yao, Yanbo Pei, Feng Huang, Haiming Yuan e Yongyuan Jiang. "Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons". Optics Express 20, n. 17 (6 agosto 2012): 19160. http://dx.doi.org/10.1364/oe.20.019160.
Testo completoGeng, Dongling, Elena Cabello-Olmo, Gabriel Lozano e Hernán Míguez. "Tamm Plasmons Directionally Enhance Rare-Earth Nanophosphor Emission". ACS Photonics 6, n. 3 (14 febbraio 2019): 634–41. http://dx.doi.org/10.1021/acsphotonics.8b01407.
Testo completoKaliteevski, M., S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, T. C. H. Liew e I. A. Shelykh. "Hybrid states of Tamm plasmons and exciton-polaritons". Superlattices and Microstructures 49, n. 3 (marzo 2011): 229–32. http://dx.doi.org/10.1016/j.spmi.2010.05.014.
Testo completoKaliteevski, M., S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin e I. A. Shelykh. "Hybrid states of Tamm plasmons and exciton polaritons". Applied Physics Letters 95, n. 25 (21 dicembre 2009): 251108. http://dx.doi.org/10.1063/1.3266841.
Testo completoGubaydullin, A. R., K. M. Morozov e M. A. Kaliteevski. "Tamm Plasmons in Structures with Quasiperiodic Metal Gratings". JETP Letters 111, n. 11 (giugno 2020): 639–42. http://dx.doi.org/10.1134/s002136402011003x.
Testo completoPühringer, Gerald, e Bernhard Jakoby. "Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States". Materials 12, n. 6 (20 marzo 2019): 929. http://dx.doi.org/10.3390/ma12060929.
Testo completoNormani, Simone, Francesco Federico Carboni, Guglielmo Lanzani, Francesco Scotognella e Giuseppe Maria Paternò. "The impact of Tamm plasmons on photonic crystals technology". Physica B: Condensed Matter 645 (novembre 2022): 414253. http://dx.doi.org/10.1016/j.physb.2022.414253.
Testo completoMischok, Andreas, Bernhard Siegmund, Dhriti Sundar Ghosh, Johannes Benduhn, Donato Spoltore, Matthias Böhm, Hartmut Fröb, Christian Körner, Karl Leo e Koen Vandewal. "Controlling Tamm Plasmons for Organic Narrowband Near-Infrared Photodetectors". ACS Photonics 4, n. 9 (17 agosto 2017): 2228–34. http://dx.doi.org/10.1021/acsphotonics.7b00427.
Testo completoLiu, Hai, Jinsong Gao, Zhen Liu, Xiaoyi Wang, Haigui Yang e Hong Chen. "Large electromagnetic field enhancement achieved through coupling localized surface plasmons to hybrid Tamm plasmons". Journal of the Optical Society of America B 32, n. 10 (4 settembre 2015): 2061. http://dx.doi.org/10.1364/josab.32.002061.
Testo completoShao, Weijia, e Tingting Liu. "Planar narrowband Tamm plasmon-based hot-electron photodetectors with double distributed Bragg reflectors". Nano Express 2, n. 4 (22 novembre 2021): 040009. http://dx.doi.org/10.1088/2632-959x/ac396b.
Testo completoZhang, Wei Li, Yao Jiang, Ye Yu Zhu, Fen Wang e Yun Jiang Rao. "All-optical bistable logic control based on coupled Tamm plasmons". Optics Letters 38, n. 20 (9 ottobre 2013): 4092. http://dx.doi.org/10.1364/ol.38.004092.
Testo completoPan, Jintao, Wenguo Zhu, Huadan Zheng, Jianhui Yu, Yaofei Chen, Heyuan Guan, Huihui Lu, Yongchun Zhong, Yunhan Luo e Zhe Chen. "Exploiting black phosphorus based-Tamm plasmons in the terahertz region". Optics Express 28, n. 9 (20 aprile 2020): 13443. http://dx.doi.org/10.1364/oe.391709.
Testo completoHajian, Hodjat, Humeyra Caglayan e Ekmel Ozbay. "Long-range Tamm surface plasmons supported by graphene-dielectric metamaterials". Journal of Applied Physics 121, n. 3 (21 gennaio 2017): 033101. http://dx.doi.org/10.1063/1.4973900.
Testo completoReshetnyak, Victor Yu, Igor P. Pinkevych, Michael E. McConney, Timothy J. Bunning e Dean R. Evans. "Tamm Plasmons: Properties, Applications, and Tuning with Help of Liquid Crystals". Crystals 15, n. 2 (27 gennaio 2025): 138. https://doi.org/10.3390/cryst15020138.
Testo completoLUO Guoping, 罗国平, 陈星源 CHEN Xingyuan, 胡素梅 HU Sumei e 朱伟玲 ZHU Weiling. "基于塔姆等离激元的近红外热电子光电探测器". ACTA PHOTONICA SINICA 51, n. 4 (2022): 0404002. http://dx.doi.org/10.3788/gzxb20225104.0404002.
Testo completoBoriskina, Svetlana V., e Yoichiro Tsurimaki. "Sensitive singular-phase optical detection without phase measurements with Tamm plasmons". Journal of Physics: Condensed Matter 30, n. 22 (10 maggio 2018): 224003. http://dx.doi.org/10.1088/1361-648x/aabefb.
Testo completoAfinogenov, Boris I., Vladimir O. Bessonov, Irina V. Soboleva e Andrey A. Fedyanin. "Ultrafast All-Optical Light Control with Tamm Plasmons in Photonic Nanostructures". ACS Photonics 6, n. 4 (5 marzo 2019): 844–50. http://dx.doi.org/10.1021/acsphotonics.8b01792.
Testo completoChen, Yikai, Douguo Zhang, Dong Qiu, Liangfu Zhu, Sisheng Yu, Peijun Yao, Pei Wang, Hai Ming, Ramachandram Badugu e Joseph R. Lakowicz. "Back focal plane imaging of Tamm plasmons and their coupled emission". Laser & Photonics Reviews 8, n. 6 (2 ottobre 2014): 933–40. http://dx.doi.org/10.1002/lpor.201400117.
Testo completoZhang, Huayue, Xin Long, Hongxia Yuan, Xiaoyu Dai, Zhongfu Li, Leyong Jiang e Yuanjiang Xiang. "Dirac semimetals Tamm plasmons-induced low-threshold optical bistability at terahertz frequencies". Results in Physics 43 (dicembre 2022): 106054. http://dx.doi.org/10.1016/j.rinp.2022.106054.
Testo completoPyatnov, Maxim, Rashid Bikbaev, Ivan Timofeev, Ilya Ryzhkov, Stepan Vetrov e Vasily Shabanov. "Broadband Tamm Plasmons in Chirped Photonic Crystals for Light-Induced Water Splitting". Nanomaterials 12, n. 6 (11 marzo 2022): 928. http://dx.doi.org/10.3390/nano12060928.
Testo completoParker, Matthew, Edmund Harbord, Andrew Young, Petros Androvitsaneas, John Rarity e Ruth Oulton. "Tamm plasmons for efficient interaction of telecom wavelength photons and quantum dots". IET Optoelectronics 12, n. 1 (1 febbraio 2018): 11–14. http://dx.doi.org/10.1049/iet-opt.2017.0076.
Testo completoWang, Zhiyu, J. Kenji Clark, Ya-Lun Ho, Bertrand Vilquin, Hirofumi Daiguji e Jean-Jacques Delaunay. "Narrowband thermal emission from Tamm plasmons of a modified distributed Bragg reflector". Applied Physics Letters 113, n. 16 (15 ottobre 2018): 161104. http://dx.doi.org/10.1063/1.5048950.
Testo completoLiang, Wenyue, Zheng Xiao, Haitao Xu, Haidong Deng, Hai Li, Wanjun Chen, Zhaosu Liu e Yongbing Long. "Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons". Optics Express 28, n. 21 (5 ottobre 2020): 31330. http://dx.doi.org/10.1364/oe.400258.
Testo completoWu, Jipeng, Yanzhao Liang, Jun Guo, Leyong Jiang, Xiaoyu Dai e Yuanjiang Xiang. "Tunable and Multichannel Terahertz Perfect Absorber Due to Tamm Plasmons with Topological Insulators". Plasmonics 15, n. 1 (10 agosto 2019): 83–91. http://dx.doi.org/10.1007/s11468-019-01011-x.
Testo completoWang, Xi, Xing Jiang, Qi You, Jun Guo, Xiaoyu Dai e Yuanjiang Xiang. "Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene". Photonics Research 5, n. 6 (3 ottobre 2017): 536. http://dx.doi.org/10.1364/prj.5.000536.
Testo completoLiu, Yamei, Qiwen Zheng, Hongxia Yuan, Shenping Wang, Keqiang Yin, Xiaoyu Dai, Xiao Zou e Leyong Jiang. "High Sensitivity Terahertz Biosensor Based on Mode Coupling of a Graphene/Bragg Reflector Hybrid Structure". Biosensors 11, n. 10 (8 ottobre 2021): 377. http://dx.doi.org/10.3390/bios11100377.
Testo completoLheureux, G., M. Monavarian, R. Anderson, R. A. Decrescent, J. Bellessa, C. Symonds, J. A. Schuller, J. S. Speck, S. Nakamura e S. P. DenBaars. "Tamm plasmons in metal/nanoporous GaN distributed Bragg reflector cavities for active and passive optoelectronics". Optics Express 28, n. 12 (1 giugno 2020): 17934. http://dx.doi.org/10.1364/oe.392546.
Testo completoYu, Tong, Cheng Zhang, Huimin Liu, Jianhui Liu, Ke Li, Linling Qin, Shaolong Wu e Xiaofeng Li. "Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO2 nanodiodes based on Tamm plasmons". Nanoscale 11, n. 48 (2019): 23182–87. http://dx.doi.org/10.1039/c9nr07549f.
Testo completoJiang, Leyong, Haiqin Deng, Xinye Zhang, Pei Chen, Licheng Wu, Rongqing Yi, Pengcheng Wang, Jie Jiang e Jun Dong. "Enhanced and tunable terahertz spin hall effect of reflected light due to tamm plasmons with topological insulators". Results in Physics 19 (dicembre 2020): 103392. http://dx.doi.org/10.1016/j.rinp.2020.103392.
Testo completoYe, Yunyang, Wei Chen, Shuxin Wang, Yamei Liu e Leyong Jiang. "Enhanced and tunable Goos-Hänchen shift of reflected light due to Tamm surface plasmons with Dirac semimetals". Results in Physics 43 (dicembre 2022): 106105. http://dx.doi.org/10.1016/j.rinp.2022.106105.
Testo completoLi, Yaoyao, Xiaoyan Yang, Jia Hao, Junhui Hu, Qingjia Zhou e Weijia Shao. "Reversibly Alterable Hot-Electron Photodetection Without Altering Working Wavelengths Through Phase-Change Material Sb2S3". Micromachines 16, n. 2 (26 gennaio 2025): 146. https://doi.org/10.3390/mi16020146.
Testo completoLo, Shu-cheng, Chia-wei Lee, Ruey-lin Chern e Pei-kuen Wei. "Hybrid modes in gold nanoslit arrays on Bragg nanostructures and their application for sensitive biosensors". Optics Express 30, n. 17 (4 agosto 2022): 30494. http://dx.doi.org/10.1364/oe.465748.
Testo completoDrazdys, Mantas, Ernesta Bužavaitė-Vertelienė, Darija Astrauskytė e Zigmas Balevičius. "Atomic Layer Deposition for Tailoring Tamm Plasmon-Polariton with Ultra-High Accuracy". Coatings 14, n. 1 (26 dicembre 2023): 33. http://dx.doi.org/10.3390/coatings14010033.
Testo completoPlikusienė, Ieva, Ernesta Bužavaitė-Vertelienė, Vincentas Mačiulis, Audrius Valavičius, Almira Ramanavičienė e Zigmas Balevičius. "Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method". Biosensors 11, n. 12 (7 dicembre 2021): 501. http://dx.doi.org/10.3390/bios11120501.
Testo completoAnulytė, Justina, Ernesta Bužavaitė-Vertelienė, Evaldas Stankevičius, Kernius Vilkevičius e Zigmas Balevičius. "High Spectral Sensitivity of Strongly Coupled Hybrid Tamm-Plasmonic Resonances for Biosensing Application". Sensors 22, n. 23 (3 dicembre 2022): 9453. http://dx.doi.org/10.3390/s22239453.
Testo completoSpektor, Grisha, Eva Prinz, Michael Hartelt, Anna-Katharina Mahro, Martin Aeschlimann e Meir Orenstein. "Orbital angular momentum multiplication in plasmonic vortex cavities". Science Advances 7, n. 33 (agosto 2021): eabg5571. http://dx.doi.org/10.1126/sciadv.abg5571.
Testo completoTomilina, O. A., A. L. Kudryashov, A. V. Karavaynikov, S. D. Lyashko, E. T. Milyukova, V. N. Berzhansky e S. V. Tomilin. "Fabry-Perot and Tamm modes hybridization in spatially non-homogeneous magneto-photonic crystal". Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ 88, n. 4 (26 novembre 2024): 599–607. http://dx.doi.org/10.31857/s0367676524040115.
Testo completoBikbaev, Rashid, Stepan Vetrov e Ivan Timofeev. "Epsilon-Near-Zero Absorber by Tamm Plasmon Polariton". Photonics 6, n. 1 (9 marzo 2019): 28. http://dx.doi.org/10.3390/photonics6010028.
Testo completo