Letteratura scientifica selezionata sul tema "Predictive uncertainty quantification"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Predictive uncertainty quantification".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Predictive uncertainty quantification"
Cacuci, Dan Gabriel. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems." Energies 15, no. 17 (2022): 6379. http://dx.doi.org/10.3390/en15176379.
Testo completoCsillag, Daniel, Lucas Monteiro Paes, Thiago Ramos, et al. "AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 15494–502. http://dx.doi.org/10.1609/aaai.v37i13.26837.
Testo completoLew, Jiann-Shiun, and Jer-Nan Juang. "Robust Generalized Predictive Control with Uncertainty Quantification." Journal of Guidance, Control, and Dynamics 35, no. 3 (2012): 930–37. http://dx.doi.org/10.2514/1.54510.
Testo completoKarimi, Hamed, and Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction." Proceedings of the AAAI Symposium Series 1, no. 1 (2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Testo completoAkitaya, Kento, and Masaatsu Aichi. "Land Subsidence Model Inversion with the Estimation of Both Model Parameter Uncertainty and Predictive Uncertainty Using an Evolutionary-Based Data Assimilation (EDA) and Ensemble Model Output Statistics (EMOS)." Water 16, no. 3 (2024): 423. http://dx.doi.org/10.3390/w16030423.
Testo completoSingh, Rishabh, and Jose C. Principe. "Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models." Neural Computation 33, no. 5 (2021): 1164–98. http://dx.doi.org/10.1162/neco_a_01372.
Testo completoChen, Peng, and Nicholas Zabaras. "Adaptive Locally Weighted Projection Regression Method for Uncertainty Quantification." Communications in Computational Physics 14, no. 4 (2013): 851–78. http://dx.doi.org/10.4208/cicp.060712.281212a.
Testo completoOmagbon, Jericho, John Doherty, Angus Yeh, et al. "Case studies of predictive uncertainty quantification for geothermal models." Geothermics 97 (December 2021): 102263. http://dx.doi.org/10.1016/j.geothermics.2021.102263.
Testo completoNitschke, C. T., P. Cinnella, D. Lucor, and J. C. Chassaing. "Model-form and predictive uncertainty quantification in linear aeroelasticity." Journal of Fluids and Structures 73 (August 2017): 137–61. http://dx.doi.org/10.1016/j.jfluidstructs.2017.05.007.
Testo completoMirzayeva, A., N. A. Slavinskaya, M. Abbasi, J. H. Starcke, W. Li, and M. Frenklach. "Uncertainty Quantification in Chemical Modeling." Eurasian Chemico-Technological Journal 20, no. 1 (2018): 33. http://dx.doi.org/10.18321/ectj706.
Testo completoTesi sul tema "Predictive uncertainty quantification"
Lonsdale, Jack Henry. "Predictive modelling and uncertainty quantification of UK forest growth." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16202.
Testo completoGligorijevic, Djordje. "Predictive Uncertainty Quantification and Explainable Machine Learning in Healthcare." Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/520057.
Testo completoZaffran, Margaux. "Post-hoc predictive uncertainty quantification : methods with applications to electricity price forecasting." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX033.
Testo completoRiley, Matthew E. "Quantification of Model-Form, Predictive, and Parametric Uncertainties in Simulation-Based Design." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1314895435.
Testo completoFreeman, Jacob Andrew. "Optimization Under Uncertainty and Total Predictive Uncertainty for a Tractor-Trailer Base-Drag Reduction Device." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77168.
Testo completoWu, Jinlong. "Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85129.
Testo completoCortesi, Andrea Francesco. "Predictive numerical simulations for rebuilding freestream conditions in atmospheric entry flows." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0021/document.
Testo completoErbas, Demet. "Sampling strategies for uncertainty quantification in oil recovery prediction." Thesis, Heriot-Watt University, 2007. http://hdl.handle.net/10399/70.
Testo completoWhiting, Nolan Wagner. "Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91903.
Testo completoPhadnis, Akash. "Uncertainty quantification and prediction for non-autonomous linear and nonlinear systems." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85476.
Testo completoLibri sul tema "Predictive uncertainty quantification"
McClarren, Ryan G. Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0.
Testo completoEva, Boegh, and International Association of Hydrological Sciences., eds. Quantification and reduction of predictive uncertainty for sustainable water resources management: Proceedings of an international symposium [held] during IUGG2007, the XXIV General Assembly of the International Union of Geodesy and Geophysics at Perugia, Italy, July 2007. International Association of Hydrological Sciences, 2007.
Cerca il testo completoHarrington, Matthew R. Predicting and Understanding the Presence of Water through Remote Sensing, Machine Learning, and Uncertainty Quantification. [publisher not identified], 2022.
Cerca il testo completoHemez, François, and Sez Atamturktur. Predictive Modelling: Verification, Validation and Uncertainty Quantification. Wiley & Sons, Limited, John, 2018.
Cerca il testo completoMcClarren, Ryan G. Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers. Springer, 2018.
Cerca il testo completoAnderson, Mark, Francois Hemez, and Scott Doebling. Model Verification and Validation in Engineering Mechanics: Theory and Applications of Uncertainty Quantification and Predictive Accuracy. John Wiley & Sons, 2005.
Cerca il testo completoModel Verification and Validation in Engineering Mechanics: Theory and Applications of Uncertainty Quantification and Predictive Accuracy. Wiley & Sons, Limited, John, 2004.
Cerca il testo completoSanderson, Benjamin Mark. Uncertainty Quantification in Multi-Model Ensembles. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.707.
Testo completoChen, Nan. Stochastic Methods for Modeling and Predicting Complex Dynamical Systems: Uncertainty Quantification, State Estimation, and Reduced-Order Models. Springer International Publishing AG, 2023.
Cerca il testo completoCapitoli di libri sul tema "Predictive uncertainty quantification"
Svensson, Emma, Hannah Rosa Friesacher, Adam Arany, Lewis Mervin, and Ola Engkvist. "Temporal Evaluation of Uncertainty Quantification Under Distribution Shift." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72381-0_11.
Testo completoMcClarren, Ryan G. "Introduction to Uncertainty Quantification and Predictive Science." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_1.
Testo completoMcClarren, Ryan G. "Gaussian Process Emulators and Surrogate Models." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_10.
Testo completoMcClarren, Ryan G. "Predictive Models Informed by Simulation, Measurement, and Surrogates." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_11.
Testo completoMcClarren, Ryan G. "Epistemic Uncertainties: Dealing with a Lack of Knowledge." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_12.
Testo completoMcClarren, Ryan G. "Probability and Statistics Preliminaries." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_2.
Testo completoMcClarren, Ryan G. "Input Parameter Distributions." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_3.
Testo completoMcClarren, Ryan G. "Local Sensitivity Analysis Based on Derivative Approximations." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_4.
Testo completoMcClarren, Ryan G. "Regression Approximations to Estimate Sensitivities." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_5.
Testo completoMcClarren, Ryan G. "Adjoint-Based Local Sensitivity Analysis." In Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0_6.
Testo completoAtti di convegni sul tema "Predictive uncertainty quantification"
Mossina, Luca, Joseba Dalmau, and Léo Andéol. "Conformal Semantic Image Segmentation: Post-hoc Quantification of Predictive Uncertainty." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00361.
Testo completoDuan, Jinhao, Hao Cheng, Shiqi Wang, et al. "Shifting Attention to Relevance: Towards the Predictive Uncertainty Quantification of Free-Form Large Language Models." In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.acl-long.276.
Testo completoGrewal, Ruben, Paolo Tonella, and Andrea Stocco. "Predicting Safety Misbehaviours in Autonomous Driving Systems Using Uncertainty Quantification." In 2024 IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE, 2024. http://dx.doi.org/10.1109/icst60714.2024.00016.
Testo completoZhou, Hao, Yanze Zhang, and Wenhao Luo. "Safety-Critical Control with Uncertainty Quantification using Adaptive Conformal Prediction." In 2024 American Control Conference (ACC). IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10644391.
Testo completoNeumeier, Marion, Sebastian Dorn, Michael Botsch, and Wolfgang Utschick. "Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00350.
Testo completoZheng, Lang, Ruxue Xing, and Yaojun Wang. "GraphCast-Qtf: An improved weather prediction model based on uncertainty quantification methods." In 2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, 2024. http://dx.doi.org/10.1109/agro-geoinformatics262780.2024.10660789.
Testo completoXu, Xinyue, Suman Paneru, Sez A. Russcher, and Julian Wang. "Physics-Guided Bayesian Neural Networks and Their Application in ODE Problems." In ASME 2024 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/vvuq2024-122961.
Testo completoLye, Adolphus, Alice Cicrello, and Edoardo Patelli. "UNCERTAINTY QUANTIFICATION OF OPTIMAL THRESHOLD FAILURE PROBABILITY FOR PREDICTIVE MAINTENANCE USING CONFIDENCE STRUCTURES." In 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2019. http://dx.doi.org/10.7712/120219.6364.18502.
Testo completoHammam, Ahmed, Frank Bonarens, Seyed Eghbal Ghobadi, and Christoph Stiller. "Predictive Uncertainty Quantification of Deep Neural Networks using Dirichlet Distributions." In CSCS '22: Computer Science in Cars Symposium. ACM, 2022. http://dx.doi.org/10.1145/3568160.3570233.
Testo completoCatanach, Thomas. "Posterior Predictive Variational Inference for Uncertainty Quantification in Machine Learning." In Proposed for presentation at the SIAM Conference on Uncertainty Quantification (UQ22) held April 12-15, 2022 in Atlanta, GA. US DOE, 2022. http://dx.doi.org/10.2172/2002336.
Testo completoRapporti di organizzazioni sul tema "Predictive uncertainty quantification"
Adams, Marvin. Phenomena-based Uncertainty Quantification in Predictive Coupled- Physics Reactor Simulations. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1364745.
Testo completoFavorite, Jeffrey A., Garrett James Dean, Keith C. Bledsoe, et al. Predictive Modeling, Inverse Problems, and Uncertainty Quantification with Application to Emergency Response. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1432629.
Testo completoLawson, Matthew, Bert J. Debusschere, Habib N. Najm, Khachik Sargsyan, and Jonathan H. Frank. Uncertainty quantification of cinematic imaging for development of predictive simulations of turbulent combustion. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/1011617.
Testo completoYe, Ming. Computational Bayesian Framework for Quantification and Reduction of Predictive Uncertainty in Subsurface Environmental Modeling. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1491235.
Testo completoMarzouk, Youssef. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1312896.
Testo completoCattaneo, Matias D., Richard K. Crump, and Weining Wang. Beta-Sorted Portfolios. Federal Reserve Bank of New York, 2023. http://dx.doi.org/10.59576/sr.1068.
Testo completoGonzales, Lindsey M., Thomas M. Hall, Kendra L. Van Buren, Steven R. Anton, and Francois M. Hemez. Quantification of Prediction Bounds Caused by Model Form Uncertainty. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1095195.
Testo completoAdams, Jason, Brandon Berman, Joshua Michalenko, and Rina Deka. Non-conformity Scores for High-Quality Uncertainty Quantification from Conformal Prediction. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2430248.
Testo completoVecherin, Sergey, Stephen Ketcham, Aaron Meyer, Kyle Dunn, Jacob Desmond, and Michael Parker. Short-range near-surface seismic ensemble predictions and uncertainty quantification for layered medium. Engineer Research and Development Center (U.S.), 2022. http://dx.doi.org/10.21079/11681/45300.
Testo completoGlimm, James, Yunha Lee, Kenny Q. Ye, and David H. Sharp. Prediction Using Numerical Simulations, A Bayesian Framework for Uncertainty Quantification and its Statistical Challenge. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada417842.
Testo completo